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1 INTRODUCTION 

 Problem Statement 

The components of most steel structures are designed to stay in the linear-elastic range, 

providing small temporary deformations and an even smaller risk of catastrophic failure. However, 

rupture is often desirable for some structures. For instance, when the box-beam, bursting, energy-

absorbing, single-sided crash cushion (BEAT-SSCC) is struck head-on by an errant vehicle, an 

extruder is forced through the tube, ripping the tube at the corners [1]. In this event, the material 

is stressed beyond the elastic range, and after some plastic flow, rupture occurs. The extraordinary 

energy dissipation, resulting from mobilizing the full spectrum of the material’s strength (i.e., 

primarily from plastic deformation and increased frictional resistance following rupture), can slow 

down the vehicle at safe occupant ridedown accelerations (ORAs), thus potentially saving a life. 

Applying numerical approximations to this example is an arduous task because cracking 

and crack propagation are the result of dynamic processes. A great number of factors contribute to 

this initiation and propagation, including inertia effects, nonlinear material properties, and 

reflecting and interacting stress waves. As a result, most models of fracture are developed after 

physical testing, where the results of the testing are used to calibrate the model. In the process of 

research and development, a system that relies on material failure may require numerous physical 

tests before arriving at the optimized design. If a model existed that could predict the onset of 

fracture without having to recalibrate it against physical testing for each design change, then the 

design process could be streamlined through numerical methods before any full-scale test is 

conducted. However, there is no method that meets this requirement with a computationally-

efficient and commercially-available platform. 
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 Research Objectives 

This research focused on the development of a failure model capable of accurately 

predicting the onset of fracture under dynamic loading conditions. First, mesh dependency was 

demonstrated in several failure criteria used in the finite element method (FEM). Then, a strain 

energy density (SED) approach to failure was developed and implemented in a post-processor over 

a non-local area of influence, described by a length scale. With this length scale, a critical SED to 

initial fracture, a material property, was determined from tensile test data. Finally, this process was 

repeated for various configurations and materials to predict the force-displacement curves prior to 

conducting physical tests. 

 Research Plan 

This project focused on applying and evaluating a non-local SED failure criterion to predict 

only the onset of fracture in steel. Model validation was limited to tensile coupon testing using 

three common steel alloys. Comparisons between models and tests were conducted using force-

displacement curves, or more specifically, the areas under those curves, representing the total 

energy in the coupon through the elastic and plastic ranges up to fracture initiation. Testing and 

modeling were applied to coupons with varying thicknesses. Finally, a stress concentration was 

included in some of the coupons to determine the model’s effectiveness in handling geometric 

obscurities without recalibration. 
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2 LITERATURE REVIEW 

  Fracture Mechanics 

  Griffith Theory 

In a paper published in 1924, Griffith proposed an energy-based approach to predicting the 

behavior of a crack [2]. He postulated that the amount of energy required to grow a crack was 

proportional to the area of the new crack surface. He also observed that rupture stresses were less 

than 10% of the theoretical value determined by his energy approach, and the energy for rupture 

was less than 1% of the theoretical value [3]. He deduced that this was caused by heterogeneity in 

the material microstructure, severe initial stresses in the material, or the formation of small cracks 

during or after manufacture. 

Irwin developed an approach that essentially mirrored Griffith’s energy approach, but he 

did so in a way that made it more convenient for engineering problems [4]. Irwin developed a term 

that would become known as the energy release rate, which he described as the “crack extension 

force tendency” [4]. The energy release rate is the derivative of the potential energy supplied by 

internal strain energy and external forces with respect to the surface area of a crack surface [3]. 

The general equation for the energy release rate is given below:  

 

 𝒢 = −
𝑑𝛱

𝑑𝐴
  (2.1) 

Where  𝒢 = energy release rate  
 Π = potential energy 
 𝐴 = surface area of the crack 
 

 Linear-Elastic Fracture Mechanics 

Linear-elastic fracture mechanics (LEFM) is primarily defined by the use of a stress 

intensity factor for determining crack extension [5]. It also assumes that a flaw or crack already 
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exists in the material, and that the nonlinear zone immediately in front of the crack tip is negligible, 

which is not entirely true for ductile metals [6]. Most concepts of fracture mechanics prior to 1960 

applied only to linear-elastic materials [3]. There are three basic stress systems or modes near a 

crack tip, as shown in Figure 1 [5]. 

 

 
Figure 1. Three Modes of Crack Surface Displacements [5] 

The stress intensity factor was introduced by Irwin in the 1950s and was developed in 

response to the difficulty in implementing Griffith’s energy approach [1,7]. Irwin found that the 

stress field in the vicinity of a crack tip took the form below [1]: 

 

 𝜎𝑖𝑗 =
𝐾

√2𝜋𝑟
𝑓𝑖𝑗(𝜃) + ⋯ (2.2) 

Where  𝐾 = stress intensity factor = 𝜎√𝜋𝑎 ∙ 𝑓(𝑎
𝑊⁄ ) 

 𝑟, 𝜃 = cylindrical coordinates of a point with respect to the crack tip 
 𝑎 = half the crack length 
 𝑓(𝑎

𝑊⁄ ) = parameter based on the geometries of the specimen and crack 
 𝜎 = remotely applied stress (differs from 𝜎𝑖𝑗) 



June 23, 2014  
MwRSF Report No. TRP-03-311-14 

 

5 

The stress intensity factor and the energy release rate are related, and this relationship is 

demonstrated by using a wide plate with a center cut. The energy release rate and stress intensity 

factor for this case are given below. Note that 𝑓(𝑎
𝑊⁄ ) = 1 for a wide plate with a central crack of 

length 2a and Mode I loading [5]. 

 

 𝒢 =
𝜋𝜎2𝑎

𝐸
 (2.3) 

 𝐾 = 𝜎√𝜋𝑎 (2.4) 

Where  𝐸 = Young’s modulus 

 

By solving for the remotely applied stress in each of the above equations and setting them 

equal, the Mode I stress intensity factor can be related to the energy release rate according to the 

below equation, which has been shown to be valid for any geometry [1]: 

 𝒢 =
𝐾2

𝐸
 (2.5) 

 

 Elastic-Plastic Fracture Mechanics 

2.1.3.1 J Integral 

A path-independent integral was developed by Rice in 1968 that was able to bypass the 

detailed solutions of boundary-valued problems [8]. This “J Integral” represents a constant value 

for any possible path from one side of a crack to the other. The J Integral is related to the strain 

energy density, components of the traction and displacement vectors, and the incremental length 

along the arbitrary contour, as shown in the equation below. The J Integral is a more general form 

of the energy release rate, and for linear-elastic material, 𝐽 = 𝒢 [3]. 
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 𝐽 = ∫ (𝑤𝑑𝑦 − 𝑇𝑖
𝜕𝑢𝑖

𝜕𝑥
𝑑𝑠)

 

Γ
  (2.6) 

Where  Γ = curve surrounding the crack tip 
 𝑤 = strain energy density = ∫ 𝜎𝑖𝑗𝑑𝜀𝑖𝑗

𝜀𝑖𝑗

0
 

 𝑇𝑖 = components of the traction vector = 𝜎𝑖𝑗𝑛𝑗  
 𝑢𝑖 = components of the displacement vector 
 𝑑𝑠 = incremental length along Γ 

 

2.1.3.2 Crack-Tip-Opening Displacement (CTOD) 

Wells observed that steel materials were too tough and exhibited too much plasticity to be 

analyzed with the LEFM method [9]. Following the testing of steel samples, he observed that the 

crack surfaces moved apart from one another, and that plastic deformation blunted the sharp end 

of the crack. The magnitude of that blunting was a function of the toughness of the material, 

leading to the development of a crack-tip-opening displacement parameter (CTOD) used to predict 

the opening of a crack as a function of the materials toughness.  

 Strain Energy Density 

Strain energy is the energy absorbed by a material during deformation caused by a loading 

process. Because of the principle of energy conservation, the strain energy is the work done by the 

load, assuming no loss of energy in thermal processes, and is equal to the area under the force-

displacement curve [10]. This principle can be illustrated by Equation 2.7: 

 

 𝑈 = ∫ 𝐹(𝑥)
𝑥

0
𝑑𝛿 (2.7) 

Where 𝑈 = strain energy 
 𝐹(𝑥) = force as a function of the displacement 
 𝑥 = displacement  
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The total strain energy is dependent on the volume of the material, in that a larger object 

would require more energy than a smaller object at the same displacement. Thus, the strain energy 

density becomes a more general, and therefore, useful tool. The strain energy density (SED) is the 

strain energy per unit of volume [10] and can be described according to the area under the stress-

strain curve, as in Equation 2.8. 

 

 𝑢 = ∫ 𝜎
𝜀

0
𝑑𝜀 (2.8) 

Where 𝑢 = strain energy density 
 𝜎 = stress 
 𝜀 = strain 

 

Sih proposed a failure criterion in response to the need to predict crack growth in mixed-

mode applications in a simple and unified manner [11-13]. First, he related the SED to a strain 

energy density factor, S, and the radial distance measured from the point of possible fracture 

initiation, r, as in Equation 2.9. 

 

 𝑢 =
𝑆

𝑟
 (2.9) 

Where 𝑢 = the strain energy density (in Sih’s notation, 𝑢 = 𝑑𝑊 𝑑𝑉⁄ ) 
 𝑆 = the SED factor 
 𝑟 = the radial distance measured from the fracture location 

 

Three hypotheses govern the SED failure criterion proposed by Sih [14] and can be 

schematically thought of as in Figure 2: 

1. The location of fracture coincides with the location of relative minimum strain energy 

density, 𝑢𝑚𝑖𝑛, and yielding with relative maximum strain energy density, 𝑢𝑚𝑎𝑥. 
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2. Failure by fracture or yielding occurs when 𝑢𝑚𝑖𝑛 or 𝑢𝑚𝑎𝑥 reach their respective critical 

values. 

3. The crack growth increments 𝑟1, 𝑟2, ⋯ , 𝑟𝑗 , ⋯ , 𝑟𝑐 during stable crack growth satisfy the 

equation 

 

 𝑢𝑐 =
𝑆1

𝑟1
=

𝑆2

𝑟2
= ⋯ =

𝑆𝑗

𝑟𝑗
= ⋯ =

𝑆𝑐

𝑟𝑐
 (2.10) 

 

 
Figure 2. Yield and Failure Hypotheses According to SED 

Sih then related the SED factor to the stress intensity factor, 𝐾 [15], which, by 1974, was 

a well-established technique for modeling linear-elastic fracture. For a comparison, he looked at 

samples with pre-existing cracks, such as a through-crack in a plate subject to uniaxial tension. He 

provided the following definition of the SED: 
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 𝑆𝐸𝐷 =
1

𝑟
(𝑎11𝑘1

2 + 2𝑎21𝑘1𝑘2 + 𝑎22𝑘2
2 + 𝑎33𝑘3

2) + ⋯ (2.11) 

 

where the coefficients for plane strain are given by: 

 𝑎11 =
1

16𝜇
[(3 − 4𝜈 − cos 𝜃)(1 + cos 𝜃)] (2.12) 

 𝑎12 =
1

16𝜇
(2 sin 𝜃)[cos 𝜃 − (1 − 2𝜈)] (2.13) 

 𝑎22 =
1

16𝜇
[4(1 − 𝜈)(1 − cos 𝜃) + (1 + cos 𝜃)(3 cos 𝜃 − 1)] (2.14) 

 𝑎33 =
1

4𝜇
 (2.15) 

Where 𝜈 = Poisson’s ratio 
 𝜇 = shear modulus of elasticity 
 𝑘𝑖 = 𝐾𝑖 √𝜋⁄  , 𝑖 = 1, 2, 𝑜𝑟 3 
 𝐾𝑖 = stress intensity factor for Mode 𝐼 
 𝜃 = angle with respect to direction of crack 

 

 Dynamic Loading and Fracture 

Dynamic fracture mechanics is concerned with the fracture caused by impact loading or 

with unstable crack propagation. Classical LEFM was developed for linear-elastic materials under 

quasi-static loading conditions. Generally, three complicating issues arise when dealing with 

dynamic effects [3]: (1) inertia forces, (2) rate-dependent material behavior, and (3) reflected stress 

waves. Reflected stress waves are of particular importance because as new surfaces are created 

through crack initiation and propagation, the reflecting stress waves will influence the stress at the 

crack tip [3]. Elastodynamic fracture mechanics are the LEFM equivalent for dynamic applications 

and can typically account for inertia effects and reflected stress waves, but often neglect nonlinear 

material behavior [3]. The incorporation of nonlinear, time-dependent material behavior into 
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elastodynamic fracture mechanics is a relatively new innovation and typically generalizes the J 

integral to account for inertia and viscoplasticity [3]. 

Multiple numerical approximations have been developed to model dynamic fracture 

mechanics. In 1985, Atluri and Nishioka published a paper summarizing advances in numerical 

approximations of dynamic fracture [16]. In a study published eight years prior, Kanninen found 

that the finite element method was ill-suited for dynamic crack propagation [17], but significant 

computational advances were made in a very short period of time [16]. The finite element method 

was applied using both stationary mesh and moving mesh procedures. When using a stationary 

mesh, the location of the crack tip advances from one node to the next over the time step. For a 

moving mesh, as implied by the name, the mesh moves with the crack tip. However, this approach 

cannot be applied to bodies with finite dimensions in the direction of crack propagation.  

Aminjikarai and Tabiei utilized the explicit time integration scheme of DYNA3D and brick 

elements to model mixed-mode crack propagation [18]. The explicit nature of the code allowed 

them to apply the mechanics to large-scale simulations. They proposed an element-deletion-and-

replacement method, but noted that instantaneous crack growth resulting from element deletion 

sends high-frequency oscillations through the solution. To overcome this problem, the authors 

applied a restraining force over a series of sub-increments between nodes, such that instead of the 

element’s resistive power instantly going to zero, it gradually tended toward zero.  

 Behavior of Steel  

Mild steel can experience variations in its constitutive relationships as the strain rate varies. 

Strain rates ranging from 10-4 s-1 to 103 s-1 were applied to a mild steel of grade St52-3N, which 

has a carbon content of 0.12 percent by weight, and the ultimate stress was shown to increase 

almost linearly with the logarithm of the strain rate [19]. The stress-strain curves at various strain 

rates applied to a thin plate are shown in Figure 3. This study highlights the fact that the effect of 
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strain rate is limited in the range of typical roadside safety applications. The ultimate stress in the 

plate at a strain rate of 1070 s-1 was approximately the same as when a strain rate of 21.4 s-1 was 

used.  

 
Figure 3. Tensile Stress-Strain Curve at Various Strain Rates for an 8-mm Thick Plate [19] 

 

 Local Fracture Modeling Techniques 

Local models characterize the behavior of a model by examining each point within the 

discretized continuum. For example, at any given time, the strain in a single element is correlated 

to the stress in that element. There are many techniques that use this approach. The FEM is not 

inherently local, but most commercial applications of the method utilize local descretizations in 
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their calculations. Extensions or modifications to the local FEM include cohesive zone models 

(CZM), overlapping tied shells, and the extended finite element method (XFEM). 

 Element Deletion 

The FEM is a numerical approximation used to solve complex partial differential equations 

for complex shapes [20]. The method’s name is derived from the process by which a shape is 

discretized into elements connected by nodes. Partial differential equations are solved for each 

element, providing an approximate solution for stress analysis, heat flow, fluid flow, and 

electromagnetics [20].  

A simple approach to fracture modeling via local FEM is element deletion. This approach 

does not require special consideration of discontinuities because of the local nature of each element 

[21]. In other words, cracks do not exist anywhere except on the boundaries of elements. Elements 

are not literally deleted, but the stress in the element is set to zero [21]. Because the energy release 

rate is dependent on the area or volume of the deleted element, mesh dependency plays an integral 

role in this approach [21]. Additionally, the orientation of the elements with respect to each other 

dictates the path of the crack and, as a result, may produce significant error in the simulated 

solution unless the mesh geometry is aligned with the crack, as determined from physical testing 

[22]. This dependency removes the possibility of predicting crack propagation. 

 Tied Nodes with Failure 

A body can be discretized with independent, separate shells or bricks, where the nodes that 

define the element share space with other nodes belonging to other elements. The group of nodes 

occupying the same space can be grouped together and held in such manner until a user-specified, 

plastic volumetric strain, 𝜀𝑣𝑝𝑙, is reached at the location of the nodes [26]. At this point, the nodes 

are released from one another. In so doing, mass loss is avoided, but crack propagation is still 

firmly rooted in the orientation of the mesh.  
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 Cohesive Zone Models (CZM) 

The CZM was originally formulated by Hillerborg to simulate the behavior of concrete and 

circumvent some of the limitations of the LEFM [27]. It assumes that as a crack opens, for small 

openings, forces can still be transmitted across the crack, thus requiring energy to overcome these 

forces and propagate the crack.  

A softening function is considered a material property for a cohesive zone model [6]. This 

function is primarily defined by two properties: (1) the tensile strength at which the crack initiates 

and begins to open, and (2) the cohesive fracture energy supplied by an external force that creates 

a unit surface area crack and is described as the area under the softening function. 

If the mesh size is small enough and cohesive zone elements are placed everywhere, a 

priori knowledge of the crack initiation and path are not needed [28]. However, for practical mesh 

sizes in large-scale simulations, the computational expense of cohesive elements restricts their use 

to the area around the crack, where the mesh would be sufficiently refined. This implies that a 

priori knowledge is required for large-scale models, thus eliminating this technique’s predictive 

capabilities [29]. Additionally, this method is not capable of modeling multiple crack paths or 

crack branching [30] and requires a pre-crack in the material in order to function properly. 

 Overlapping Tied Shells 

This technique was developed to capture realistic behavior of polymer parts on a vehicle 

in the event of a crash [22]. It was adapted to LS-DYNA for particular use in simulating full-scale 

models. It uses the simple approach of element deletion and does not require remeshing. In essence, 

an object is modeled with two parts, each of which is discretized with shell elements. The technique 

is characterized by the use of regular tetragon shell elements, with the mesh of one part rotated 45 

degrees with respect to the other part. Finally, the two parts are connected with a tied contact, 

*CONTACT_TIED_SHELL_EDGE_TO_SURFACE_BEAM_OFFSET [31]. Ultimately, crack 
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propagation is still mesh-dependent, but this technique reduces that dependency significantly. The 

results of the polymer simulation matched physical testing well in crack initiation, crack path, and 

force necessary to propagate the crack [22]. Similarly, crack initiation and path were modeled well 

in the windshield of a vehicle undergoing deformation in its A-pillar. However, force levels in the 

model were lower than in the physical test, prompting the authors to recommend further study of 

the technique [31]. 

 Extended Finite Element Method (XFEM) 

To model a meandering crack with finite elements, the mesh must be aligned with the 

geometry of the crack. The extended finite element method (XFEM) was developed in response to 

this cumbersome practice [32]. The traditional finite element solution, using the summation of 

nodal displacements and shape functions, must be modified at the node or nodes that may 

experience a discontinuity. A jump function is added to a node near the crack but away from the 

crack tip, and to model an entire crack, asymptotic crack tip functions are added to nodes around 

the crack tip [32]. The incorporation of the additional functions was accomplished using the 

partition of unity method, which ultimately allowed for crack growth without requiring the user to 

remesh the model. 

However, as with the local FEM, the divergence of the stress field is used to describe the 

equations of motion [33]. Therefore, as indicated previously, exceptions to the equation of motion 

must be implemented at the discontinuity because the divergence of the stress field is undefined.  

Additionally, XFEM has been used to model dynamic fracture using the loss-of-

hyperbolicity criterion, or the point at which the tangent modulus loses its positive slope, and the 

level set method [34]; however, it was not able to model multiple cracks or crack branching [30]. 
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 LS-DYNA 

LS-DYNA is produced by Livermore Software Technology Corporation (LSTC), which is 

located in Livermore, CA. The code is generally used for large deformations and dynamic 

responses, particularly in the field of impact engineering, and it utilizes explicit time integration 

[23]. Element deletion, CZM, overlapping tied shells, and XFEM can be used in LS-DYNA [22-

25], although XFEM has only recently been added and may not be practice-ready at the moment. 

Element deletion is incorporated in material models, such as *MAT_024 

(*MAT_PIECEWISE_LINEAR_PLASTICITY), where the “FAIL” parameter is set to a negative 

number for a user-defined failure subroutine or positive for plastic strain to failure [26].  

Numerous failure criteria can be defined and applied to any material by including 

*MAT_ADD_EROSION in the model. Of particular interest are failure definitions for maximum 

principal strain and maximum shear strain. 

LS-DYNA also enables its users to create their own material models, which can incorporate 

failure [26]. Constitutive equations can be developed any way the user chooses, and similarly, an 

existing material model with a user-defined failure subroutine can be used [24]. 

 Non Local Fracture Modeling Techniques 

Nonlocal methods were developed in part to investigate the effect of the microscopic 

material structure on the macroscopic material behavior [35]. Among the more commonly used 

non-local techniques are molecular dynamics (MD) and peridynamics. 

 Molecular Dynamics 

Molecular dynamics was developed in the 1950s and 60s to solve Newton’s equations of 

motion between atoms and molecules using molecular force fields [36-37]. Each molecule is 

treated as a point mass, subject to Newton’s laws of motion, but the time step required in this 



June 23, 2014  
MwRSF Report No. TRP-03-311-14 

 

16 

method is substantially small [38]. Therefore, using MD at any practical engineering scale would 

require unreasonable computational time. 

 Peridynamics 

In the theory of peridynamics, the partial differential equations used in the classical theory 

of solid mechanics were replaced by integro-differential equations [39]. As a result, the theory is 

ideally suited for fracture, particularly in problems where the crack location is unknown [40]. The 

original peridynamic equation of motion is given below [39-40], where bold terms represent 

vectors, and applicable terms are illustrated in Figure 4 [41]: 

 

 𝜌(𝒙)𝒖̈(𝒙, 𝑡) = ∫ 𝒇(𝒖(𝒙′, 𝑡) − 𝒖(𝒙, 𝑡), 𝒙′ − 𝒙)𝑑𝑉𝒙′ + 𝒃(𝒙, 𝑡)
 

ℋ
 (2.16) 

Where 𝜌(𝒙) = mass density 
 𝒖(𝒙, 𝑡) = 𝒖 = displacement vector  
 𝒖(𝒙′, 𝑡) = 𝒖′ = displacement vector of a neighboring point 
 𝒙 = position vector 
 𝒙′ = position vector of a neighboring point 
 𝑡 = time 
 𝒇(𝜼, 𝝃) = pairwise force function for all bonds, 𝝃, and relative displacements, 𝜼 

 𝒃(𝒙, 𝑡) = prescribed body force density 
 𝑉𝒙′ = volume around the position vector of a neighboring point 
 𝝃 = 𝒙′ − 𝒙 

 𝜼 = 𝒖′ − 𝒖 

 ℋ = integration region around 𝒙 with radius = 𝛿 
 𝛿 = peridynamic horizon of the material 
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Figure 4. Schematic of Peridynamic Representation [41] 

 Coupling FEM and Peridynamics 

Due to the non-local nature of peridynamics, implementation of its theory can lead to 

computationally expensive models. However, its efficiency can be dramatically improved when 

coupled with the local FEM. A study was done to model the penetration of a projectile through a 

steel plate using ABAQUS, peridynamics (via EMU, a numerical code developed specifically to 

discretize the peridynamic equations), and a coupled form of the two [52]. The square aluminum 

plate was 9.8 in. (250 mm) to a side and 0.5 in. (12.5 mm) thick. The impacting ball was 2 in. (50 

mm) in diameter and weighed 11.3 lb (5.11 kg). The model used 50,000 nodes in its grid spacing 

and approximately 2.4 million bonds in the EMU model. The model was also simulated with a 

coupled model that used 1,200 conventional continuum elements, 12,500 peridynamic nodes, and 

670,000 trusses that were embedded in the continuum elements and represented the peridynamic 

bonds described previously. EMU required 283 minutes of wall-clock time to complete the 

simulation, whereas ABAQUS required 73 minutes. Even more interesting, when peridynamics 
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was coupled to the local FEM code, the wall-clock time was reduced even more to 27 minutes. 

The embedded trusses carry forces according to the constitutive modeling relationships of the 

peridynamic theory, and the sum of the forces in the trusses connected to a node are used to 

describe the motion of that node, according to the peridynamic equation of motion [53]. 

Another study done by Beckmann et al. incorporated trusses in the model to represent the 

bond between two nodes [54]. The behavior of each bond was controlled by a quasi-force-stretch 

constitutive relationship, where the truss was set to fail at a prescribed critical stretch, as 

determined from the critical energy release rate, the horizon radius, and the bulk modulus. 

Another approach to couple the two theories is to divide the body into two domains, one 

with finite elements and one with collocation points that are connected within a horizon [55]. Each 

collocation point is described by a hexahedral subdomain and uses eight integration points. The 

two domains overlap in a region where the properties of the finite elements are effectively voided, 

but their presence dictates displacement boundary conditions for use in the peridynamic regions. 

A third method of coupling involves submodeling [56-57]. Essentially, two separate 

models are simulated, with the first being a local FEM model. This first model is simulated under 

the assumption that the body remains continuous. Then, if the development of a crack in a specific 

region is expected, that region would be cut out of the local FEM model, and the displacements 

from that model would be used in the submodel. For this to work, the effect of the crack on the 

overall displacement must be negligible. If this is the case, then the displacement boundary 

conditions can be applied to the peridynamic model (EMU) of the cut-out region, and the second 

or sub-model can be simulated. However, a priori knowledge of the crack location is required, 

which negates one of the most attractive features of peridynamics. 
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3 RESEARCH APPROACH AND METHODOLOGY 

To accomplish the objectives of this research, a series of tasks were completed to create a 

new model for failure prediction in the material based on a non-local strain energy density 

criterion. In addition to generating this new model, physical tests were carried out to validate the 

model results, providing confidence in the results. 

First, the strain energy density (SED) that was required to initiate fracture for an enlarged 

steel coupon was estimated from a dynamic uniaxial tension test. This SED was derived from 

stress-strain data taken from quasi-static tensile data found in literature. Later, dynamic tensile 

tests were conducted wherein the forces used to calculate stresses were recorded by load cell 

transducers, and the deflection data used to calculate strains was collected via high-speed video 

analysis. These dynamic tests were used to validate the non-local SED model.   

The coupon was then modeled with five different mesh densities, employing shell elements 

in LS-DYNA. First, well-established failure models (maximum principle strain, maximum plastic 

strain, maximum shear strain, and constrained tied nodes with failure) were applied to the five 

meshes, and one of the five meshes was fine-tuned for each failure technique until modeled results 

matched physical test results. These fine-tuned material models were applied to the remaining 

meshes. Then, the approximated solution for the SED at the onset of fracture was plotted against 

the number of shell elements through the cross section to observe the mesh sensitivity of each of 

these techniques. 

Each mesh was then simulated with a piecewise linear plasticity material model 

(*MAT_024 in LS-DYNA), wherein failure was set to unrealistically high strains. In the process, 

the displacement of every node was recorded for post-processing. Next, the nodal output was 

analyzed via a FORTRAN code developed by the author, wherein a non-local SED failure criterion 

was implemented. This implementation included determining the coarsest mesh that provided a 



June 23, 2014  
MwRSF Report No. TRP-03-311-14 

 

20 

converged solution, the non-local length scale required to reduce mesh sensitivity, and the critical 

SED over the non-local area surrounding a point. This final requirement was completed by 

empirically deriving a magnification factor of the critical global SED of the material based on a 

length scale large enough to include a sufficient number of nodes in the calculations. 

With the established non-local length scale and critical SED for high-strength steel, the 

physical testing phase was repeated for a thinner coupon, and the model was adjusted by thinning 

the shell sections. The model was used to predict the force-displacement curve of the thinner 

coupon prior to conducting the test. Similarly, a model was created for AASHTO M180 steel sheet 

metal (used in standard W-beam guardrail). The critical SED was determined from quasi-static 

tensile testing taken from literature. It was then used to predict force-displacement curves up to 

fracture for various steel coupons with different dimensions. 

Finally, a stress concentration was added to some coupons, and the LS-DYNA model was 

adjusted accordingly. In combination with reduced thicknesses, this addition was made to study 

the effect of geometric changes on the SED failure criterion. If the model accurately predicted 

fracture, then it could be concluded that recalibration is not required for geometric changes in the 

part. 

Crack propagation modeling was not possible at this time but may be included in the future. 

The current research effort predicts the onset of fracture for a steel tensile sample based on video 

evidence from dynamic component testing. Therefore, once a point of fracture initiation has been 

identified, the remainder of the simulation no longer represents physics. Results of the analysis, 

up to the point of fracture initiation, were compared to the physical test results. This comparison 

was made with force-displacement curves, effectively comparing the energy required to deform 

and fracture the steel. 
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4 MESH SENSITIVITY OF EXISTING TECHNIQUES 

 Parametric Model Description 

The enlarged steel coupon shown in Figure 5 was discretized with shell elements using five 

differing mesh densities. For the mesh sensitivity study, the coupon was 5/16 in. (8 mm) thick. The 

coupon was divided into two parts, where the first part included the square tabs on each side of the 

coupon. The density of shell elements along the outside edges was controlled by the density of the 

shell elements through the critical section. However, the mesh density around the bolt hole was 

very fine, and remained unchanged for each mesh. This fine mesh was used so that the contact 

between the coupon and the rigid cylinders represented pinned connections without large 

penetration errors, which would lead to unstable models via shooting nodes around this bolt hole. 

 

 
Figure 5. Dimensions of Enlarged Steel Tensile Coupons 

Additionally, a rigid cylinder was placed through each of the bolt holes. One cylinder was 

fixed in space in all three directions, while the other was prescribed a constant motion of 22.4 mph 

(10 mm/ms) with a linear ramp-up time of 0.1 ms. Contact between each cylinder and the coupon 

was modeled using an automatic, one-way, surface-to-surface algorithm using a segment-based 
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penetration check to compute contact stiffness (SOFT = 2). The material was modeled with 

*MAT_PIECEWISE_LINEAR_PLASTICITY, where seven data points were used in the material 

card and are shown in Figure 6. These data points were tabulated and included in the figure. The 

effective plastic strains (EPS) were shown on the x-axis of the plot and the effective or true stresses 

(ES) were shown on the y-axis. EPS were taken from values reported in literature [59], and ES 

were scaled from that reported data such that the yield stress matched the material certificate of 

conformity given in Appendix B. 

 

 
Figure 6. LS-DYNA Material Model Parameters 

In general, quadrilateral shell elements were used wherever possible. However, in some 

regions, triangular shell elements were required to fit around curved edges or holes. Also, the 

transition region from reduced-width to maximized-width required triangular shells. This 

prompted the use of the input card *CONTROL_SHELL, which governs the behavior of all shell 

elements unless specifically adjusted with individual section cards. Of particular note, this card 
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contains a parameter to sort elements and treat degenerate quadrilateral shells as triangular C0 

elements. If this card is omitted, the default for the sorting parameter is turned off. Therefore, since 

triangular elements are present in all meshes, the ESORT parameter was set to 1, providing full 

sorting for C0 triangular elements. 

Another common feature among all models contained herein is the number of integration 

points analyzed through the thickness of the elements. By default, these calculations are performed 

using Gaussian integration over 2 points. In general, more Gauss points roughly equates to a more 

accurate solution. However, there is a point where adding an additional Gauss point does not 

significantly improve the results of the model. In many ways, this is similar to determining the 

density of the mesh that provides a stable and accurate solution. However, this additional study 

was not done to determine the minimum number of Gauss points that provide an accurate solution, 

since the time savings in the calculations would be negligible. Therefore, the default value of 2 

was replaced by 5 integration points for all models.  

Another default parameter that required adjustment was the shear correction factor, which 

by default is 1.0. The LS-DYNA keyword manual recommends a value of 5/6 for isotropic materials 

[26], and as such, this value was adopted for all models. 

The densities of the five meshes were approximately controlled by establishing the number 

of shell elements through the critical width of the coupon, namely 4, 8, 12, 16, and 20 elements. 

The mesh densities used in the critical sections are summarized in Table 1, and a graphical 

depiction of each density is given in Figures 7 through 11. A close-up view of the critical cross-

section is included in these figures. To create these coupons, two parts were generated and 

duplicate nodes were merged. The interior part was considered the critical section, and it was this 

part that determined the number of shells and nodes reported in Table 1. 
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Table 1. Mesh Densities 

 

 

 
Figure 7. Mesh 1 – 4 Elements through the Cross Section with a Close-Up View 

 

 
Figure 8. Mesh 2 – 8 Elements through the Cross Section with a Close-Up View 

 

 
Figure 9. Mesh 3 – 12 Elements through the Cross Section with a Close-Up View 

Mesh
Shells through 
Cross Section

Total 
Shells

Total 
Nodes

1 4 243 308
2 8 1,012 1,141
3 12 2,222 2,318
4 16 3,771 4,029
5 20 5,978 6,300
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Figure 10. Mesh 4 – 16 Elements through the Cross Section with a Close-Up View 

 
Figure 11. Mesh 5 – 20 Elements through the Cross Section with a Close-Up View 

Each of these mesh densities was used to model failure in well-established techniques 

available in LS-DYNA. Eight failure criteria or modeling techniques suited to cracking were 

identified and included maximum plastic strain, tied nodes with failure, maximum principal strain, 

maximum shear strain, cohesive zone models (CZM), extended finite element method (XFEM), 

smoothed particle hydrodynamics (SPH), and tied overlapping shells. However, CZM requires a 

discontinuity, such as a crack tip, to work and was excluded from further consideration. XFEM 

has only recently been implemented in LS-DYNA and suffers from implementation complications, 

possibly related to the version of LS-DYNA used in this study, thus eliminating it from the current 

investigation. SPH models go unstable almost immediately when tension is applied, and it was 

excluded. Finally, the tied overlapping shells technique presents jagged edges where the shells are 

rotated, and as a result, stress concentrations develop in erroneous locations. Until a pre-processor 

can more adequately mesh a part with overlapping shells, this technique cannot be used and was 

thus excluded. This left four failure criteria to investigate: (1) maximum plastic strain, (2) tied 

nodes with failure, (3) maximum principal strain, and (4) maximum shear strain. First, the failure 
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criterion for each of these four approaches was adjusted in mesh 3 from Table 1 or Figure 9 until 

the modeled results matched physical results. For example, the maximum plastic strain was 

adjusted by trial-and-error until the initiation of fracture (element deletion, in this case) matched 

the test results. Then, the same value for the failure parameter was used in the two coarser meshes 

(mesh 1 and 2) and two finer meshes (mesh 4 and 5). Finally, the force-deflection curve up to 

failure and the SED at failure were recorded for all five meshes and plotted against the number of 

elements through the cross section of the model. The deflections were measured from the outside 

edges of the coupon to provide a precise and consistent point of comparison between all models. 

The force was taken from a cross-section force recorded in the ASCII files and read by the post 

processor. The engineering stress was calculated by dividing the cross-section tension force by the 

initial cross-sectional area. Finally, the strain was calculated by dividing the displacement in the 

critical section (not the overall displacement mentioned previously) by the original gauge length 

between the two points used in the analysis. The SED at fracture was determined by integrating 

the stress-strain curve and locating the SED at the correct strain, correlating with the predicted 

time of fracture. 

Quasi-static stress-strain data for A572 Gr. 50 steel was available from literature and was 

used to calibrate each model. This data is shown in Figure 6. Integration of this curve was 

accomplished via the trapezoidal rule, according to Equation 4.1, and the resulting strain energy 

density used for calibrating the models was 21.0 ksi (145 MPa). 

 

 𝑆𝐸𝐷 = ∫ 𝜎(𝜀)
𝜀𝑓

0
𝑑𝜀 ≈ ∑

𝜎(𝜀𝑖)+𝜎(𝜀𝑖−1)

2
∙ (𝜀𝑖 − 𝜀𝑖−1)𝑛

𝑖=1  (4.1) 

Where 𝑆𝐸𝐷 = Strain Energy Density 
 𝜀𝑓 = failure strain of the material 
 𝜎(𝜀) = stress curve as a function of the strain 
 𝑑𝜀 = infinitesimal increase of strain 
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 𝑖 = increment of summation for trapezoidal rule 
 𝑛 = number of increments needed for accurate summation 

 

 Maximum Plastic Strain 

If the FAIL input parameter in *MAT_PIECEWISE_LINEAR_PLASTICITY is set to a 

positive number, the element will fail when the plastic strain reaches that number. Therefore, this 

parameter was adjusted for mesh 3 until the final SED matched the physical results, requiring an 

elemental failure strain of 1.03 to initiate fracture in the material. 

 Tied Nodes with Failure 

This approach required that each shell element be self-contained (i.e., the nodes defining 

the shell were not shared with any other shells). Then, all of the nodes occupying the same space 

were tied together and given a failure condition by *CONSTRAINED_TIED_NODES_

FAILURE. The constitutive relationship in each shell was controlled by the same material cards 

as the maximum plastic strain procedure, except the failure strain was adjusted. To match the 

results of mesh 3 to the physical test results, an elemental failure strain of 1.21 was used to initiate 

fracture in the material. 

 Maximum Principal Strain 

This approach used the card *MAT_ADD_EROSION to define failure. The constitutive 

relationship (Figure 6) in each shell was controlled by the same material cards as the maximum 

plastic strain procedure, except the failure strain was set to a large number, 1 × 1020. Then the 

material ID used by the plasticity card was input into the erosion card, signifying that the 

*MAT_024 material would fail according to the provisions included in the erosion material cards. 

In this case, to match mesh 3 model results to physical test results, a maximum principal strain 

(MXEPS) of 1.00 was used to initiate fracture in the material. 
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 Maximum Shear Strain 

Similar to the preceding section, this approach used *MAT_ADD_EROSION and 

*MAT_024. Maximum shear strain was related to the maximum and minimum principle strain 

according to the relationships demonstrated in Mohr’s circle. Knowing the principle strains, 𝜀1 and 

𝜀2, the shear strain, 𝛾, is calculated as follows: 

 

 𝛾 =
𝜀1−𝜀2

2
 (4.2) 

Where 𝛾 = Shear strain 
 𝜀1 = Maximum principle strain 
 𝜀2 = Minimum principle strain 
 
 

The failure flag is activated when the shear strain equals or exceeds the user-specified 

maximum (𝛾 ≥ 𝛾𝑚𝑎𝑥). Maximum shear strain (EPSSH in *MAT_ADD_EROSION) was adjusted 

until the mesh 3 results matched physical test results, requiring a maximum shear strain of 1.10 to 

initiate fracture in the material. 

 Summary and Discussion 

The value used for determining failure of an element or tied connection for each of the four 

described modeling techniques was determined by calibrating the central mesh (mesh 3) with 

physical tensile data. These limiting values are summarized in Table 2. 

Table 2. Summary of Failure Parameters for Mesh 3 

 

Maximum Plastic Strain 1.03
Tied Nodes with Failure 1.21

Maximum Principle Strain 1.00
Maximum Shear Strain 1.10

Failure Parameter Value for Mesh 3
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Internal energy, cross-sectional force, gauge-length deflection, and SED, as functions of 

the number of elements through the cross section, are plotted in Figures 12 through 15. 

Corresponding tabulated results are shown in Tables 3 through 6. The first three functions were 

included because the models were calibrated with SED. Therefore, pseudo-convergence studies 

were conducted on neutral variables, or variables that were indirectly affected for all four 

techniques. General FEM modeling requires a mesh sensitivity analysis to determine the coarsest 

allowable mesh while maintaining a converged solution. The premise of this research is based on 

the hypothesis that currently existing modeling techniques demonstrate significant mesh 

dependence, and this research would result in a technique that reduces that sensitivity. Therefore, 

once mesh dependence was demonstrated, the convergence study was ceased, making it a pseudo-

convergence study, rather than a complete convergence study. In other words, a converged solution 

was not necessary to demonstrate mesh dependence. 

Each of the four modeling techniques exhibited some level of mesh dependence, thus 

proving the hypothesis to be correct, and all but one appeared to converge or start to converge to 

a solution for the two finer meshes, indicating that the model is behaving as a typical FEM model 

is intended. In other words, as elements are added to the cross section, the model should tend 

towards the solution (or converge), as was the case in this study. In particular, the maximum plastic 

strain and maximum principle strain criteria provided nearly converged solutions of each metric 

for meshes 4 and 5. Also, the maximum shear strain began to converge but failed to reach the same 

level of convergence as the maximum plastic strain criterion. Tied nodes with failure, however, 

did not appear to converge for the given mesh densities.  

The SED criterion was not a neutral variable. It was used to calibrate each model, and as 

such, it was expected to show similarities between the four techniques. In this case, the four 

techniques have very similar relationships between the SED at the point of fracture and the number 
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of elements through the cross section. However, the magnitudes were different at the extreme 

meshes. This parameter was calculated in LS-PrePost by first plotting the engineering stress 

against the engineering strain. The engineering stress was calculated by using a “secforc” ASCII 

file and dividing the resultant force by the cross-sectional area. The engineering strain was 

calculated by plotting the change in length in the x-direction and dividing that difference by the 

original gauge length. The two plots, as functions of time, were cross-plotted to get the classical 

stress-strain curve. Then, this curve was integrated to plot the SED as a function of strain. The 

SED at the point of fracture initiation correlated with the strain at the point of fracture initiation.  

 

 
Figure 12. Internal Energy at the Point of Fracture Initiation 
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Table 3. Results of Convergence with Respect to Internal Energy 

 

 

 

 
Figure 13. Cross-Sectional Force at the Point of Fracture Initiation 

Mesh Description: Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5
Number of Elements in X-Section: 4 8 12 16 20

Maximum Plastic Strain 13.539 12.098 11.915 11.612 11.614
Tied Nodes with Failure 15.614 13.923 12.959 12.215 11.877

Maximum Principle Strain 13.237 12.096 11.852 11.613 11.614
Maximum Shear Strain 15.220 13.115 12.511 12.223 12.080
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Table 4. Results of Convergence with Respect to Cross-Sectional Force 

 

 

 

 
Figure 14. Gauge Length Deflection at the Point of Fracture Initiation 

Mesh Description: Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5
Number of Elements in X-Section: 4 8 12 16 20

Maximum Plastic Strain 148.0 150.0 153.2 154.9 155.1
Tied Nodes with Failure 129.1 111.1 115.2 130.2 140.2

Maximum Principle Strain 149.2 153.0 154.4 155.1 156.4
Maximum Shear Strain 131.3 133.4 137.4 140.8 142.6

Force at Fracture Initiation (kN)
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Table 5. Results of Convergence with Respect to Gauge Length Deflection 

 
 
 

 
Figure 15. Strain Energy Density at the Point of Fracture Initiation 

Table 6. Results of Convergence with Respect to Strain Energy Density 

 

Mesh Description: Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5
Number of Elements in X-Section: 4 8 12 16 20

Maximum Plastic Strain 88.0 80.5 78.9 78.1 78.2
Tied Nodes with Failure 98.2 88.4 81.2 75.3 72.8

Maximum Principle Strain 87.8 79.6 78.1 76.9 76.5
Maximum Shear Strain 95.0 83.4 78.4 76.4 77.0

Deflection of Gage Length at Fracture Initiation (mm)
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Mesh Description: Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5
Number of Elements in X-Section: 4 8 12 16 20

Maximum Plastic Strain 0.162 0.149 0.146 0.145 0.145
Tied Nodes with Failure 0.176 0.157 0.147 0.138 0.134

Maximum Principle Strain 0.162 0.148 0.145 0.143 0.142
Maximum Shear Strain 0.1713 0.153 0.145 0.141 0.142

Strain Energy Density at Fracture Initiation (mm-kN/mm3)
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 Hourglass Energy 

The shell elements were governed by a Belytschko-Tsay element formulation [66]. The 

formulation is computationally efficient but often suffers from the non-physical phenomenon 

known as hourglassing. To determine if more robust element formulations were required, or if 

hourglass controls needed to be added, the hourglass energy and internal energy of the coupon was 

plotted in Figure 16. From this plot, the hourglass energy was zero throughout the simulation, and 

a similar response was seen in all models. Therefore, the Belytschko-Tsay element formulation 

was considered adequate. 

 

 
Figure 16. Hourglass and Internal Energy for Maximum Plastic Strain Model 
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5 DYNAMIC TENSILE TESTING SETUP 

 Purpose 

Enlarged steel coupons were dynamically tested in tension to study the phenomena 

associated with this loading pattern. Specifically, strain-rate dependence and stress wave 

propagation were examined. The first phenomenon was investigated with physical testing to 

determine if it was applicable to the steel coupons for loading rates indicative of roadside safety 

engineering applications, specifically an impact event wherein a vehicle strikes a longitudinal 

barrier, such as a W-beam guardrail system. Then, testing was carried out to determine the 

accuracy of the SED failure criterion with respect to fracture initiation, as described in chapter 7. 

All dynamic tests were conducted at the Midwest Roadside Safety Facility (MwRSF) Proving 

Grounds in Lincoln, Nebraska. The testing facility is located at the Lincoln Air Park on the 

northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest 

of the University of Nebraska-Lincoln. 

 Scope 

Dynamic tensile testing on wire rope has been done by MwRSF in the past and provided 

the framework for the current research [69]. A total of 11 bogie tests were conducted on enlarged 

steel coupons mounted to a rigid frame and concrete bogie block. The steel coupons were 

composed of ASTM A572 Grade 50, ASTM A1011-12B Grade 50, or AASHTO M180 steel, and 

the mill certificates of conformity are given in Appendix B. Testing was limited to uniaxial tension, 

producing primarily Mode I loading. Coupons were cut either parallel (longitudinal) or 

perpendicular (transverse) to the roll direction. Stress concentrations were added to four coupon 

tests. Finally, testing was conducted at temperatures well above the ductile-to-brittle transition 

temperature.  
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 Summary of Steel Coupons and Component Tests 

In all, 11 enlarged steel coupons were planned for the dynamic testing program and 

subjected to uniaxial tension. A stress concentration was included in four of those coupons. Three 

materials were employed: A572 Gr. 50, A1011-12B Gr. 50, and AASHTO M180. Coupon 

thickness was either 5/16 in. (7.9 mm), 10 gauge (3.42 mm), or 12 gauge (2.67 mm). The width of 

the critical section was either 1⅝ or 2¼ in. (41.3 or 57.2 mm). Target bogie velocities ranged from 

5 to 25 mph (8.0 to 40.2 km/h). Finally, the orientation of the grain in the steel resulting from the 

rolling process was either parallel or perpendicular to the direction of the coupon. A summary of 

all 11 steel coupons and test conditions is shown in Table 7. 

Table 7. Summary of Dynamic Bogie Testing Matrix for Enlarged Steel Coupons 

 

 

 Evolution of Testing Phase 

Initially, six coupons of A572 Gr 50 steel were created for testing, with three cut parallel 

to the grain of the steel and three cut perpendicular to the grain of the steel. Testing was to begin 

with low-speed tensile loads (targeting 5 to 10 mph or 8.0 to 16.0 km/h). The first test (test no. 

DFS-L3) was conducted on a longitudinal sample (cut parallel to the grain), and the actual speed 

Test Name Material
Stress 

Concentration
Thickness, in. 

[mm]
Width, in. 

[mm]
Target Bogie Velocity, 

mph [km/h]
Grain 

Orientation
DFS-L1 A572 Gr. 50 Circle 5/16 [7.9] 1⅝ [41.3] 15 to 20 [24.1 to 32.1] Longitudinal
DFS-L2 A572 Gr. 50 Circle 5/16 [7.9] 1⅝ [41.3] 15 to 20 [24.1 to 32.1] Longitudinal
DFS-L3 A572 Gr. 50 None 5/16 [7.9] 1⅝ [41.3] 5 to 10 [8.0 to 16.1] Longitudinal

DFS-L3-2 A572 Gr. 50 None 5/16 [7.9] 1⅝ [41.3] 20 to 25 [32.2 to 40.2] Longitudinal
DFS-L4 AASHTO M180 None 12 ga. [2.66] 2¼ [57.2] 15 to 20 [24.1 to 32.1] NA
DFS-L5 A1011-12B Gr. 50 None 10 ga. [3.42] 1⅝ [41.3] 15 to 20 [24.1 to 32.1] NA
DFS-L6 AASHTO M180 Circle 12 ga. [2.66] 2¼ [57.2] 15 to 20 [24.1 to 32.1] NA
DFS-L7 A1011-12B Gr. 50 Circle 10 ga. [3.42] 1⅝ [41.3] 15 to 20 [24.1 to 32.1] NA
DFS-T1 A572 Gr. 50 None 5/16 [7.9] 1⅝ [41.3] 20 to 25 [32.2 to 40.2] Transverse
DFS-T2 A572 Gr. 50 None 5/16 [7.9] 1⅝ [41.3] 20 to 25 [32.2 to 40.2] Transverse
DFS-T3 A572 Gr. 50 None 5/16 [7.9] 1⅝ [41.3] 20 to 25 [32.2 to 40.2] Transverse
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of the bogie at the time of release from the towing vehicle was 12.2 mph (19.6 km/h). Since no 

plastic deformation was observed in the sample, a second test (test no. DFS-L3-2) using this 

coupon was set up for a higher speed, targeting 20 to 25 mph (32.2 to 40.2 km/h). For both tests, 

the 4-cable towing assembly was laid out in one curve, with the amplitude of the curve 

perpendicular to the direction of travel of the bogie. For the high-speed test, the steel coupon 

ruptured before the cables even lifted off the ground or became completely straight with respect to 

the direction of the bogie. This result indicated an enormous amount of energy in the cable: enough, 

in fact, to cause significant damage to the components of the test configuration. This damage 

included complete rupture of a high-strength, ¾-in. (19-mm) diameter cable tether, which was 

intended to prevent the separated end of the coupon from being dragged down the runway.  

Owing to this extreme energy, the cables were repositioned for subsequent tests by looping 

the cables parallel to the bogie direction. With this configuration, the side-to-side motion of the 

cable was mitigated, and the energy in the cable was primarily applied parallel to the bogie 

direction, which would then reduce damage in the system that was previously caused by side-to-

side cable whip. This reduced damage would allow for faster turn-around time from test to test and 

a more consistent uniaxial tensile load on the steel coupon. 

Initially, the cable was attached to two tubes positioned on rollers, supported by the web 

of a steel H-barrier [70]. These tubes were only 1/8-in. (3.2-mm) thick, and the sudden application 

of energy from the cable caused significant deformation around the bolt holes and throughout the 

length of the tube.  The H-barrier itself was knocked off its support and out of alignment. To 

mitigate this, the tube thicknesses were increased to 3/8 in. (9.5 mm) and welded together. Then, 

the combined assembly was mounted to a second bogie vehicle. This additional weight and 

stiffened system damped out vibrations from the cable loading to the point where multiple tests 
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could be conducted in a single day with very little down time required for repairs. An overall view 

of the final version of the dynamic test configuration is shown in Figure 17. 

 

 
Figure 17. Overall View of Final Version of the Dynamic Tensile Test Configuration 

 Equipment and Instrumentation 

The equipment and instrumentation that was used to collect and record data during the 

dynamic component tests included a bogie, a test jig, accelerometers, load cells, high-speed and 

standard-speed digital video, and still cameras. 
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 Bogies 

Two rigid-frame bogies were used to apply the tensile load. A four-cable tether was used 

to connect the two bogies. The larger bogie, weighing 4,952 lbs. (2,251 kg), was guided by keeping 

one side’s wheels in the valley of a guardrail, as shown in Figure 18. The smaller bogie, weighing 

2,108 lbs (956 kg), was attached at one end to the four-cable tether, and at the other end to the steel 

coupon.  

 

 
Figure 18. Rigid-Frame Bogie on Guidance Track 

The four-cable assembly was originally attached to the larger bogie by a ribbed bracket 

and shackle assembly, where the 1-in. (25-mm) diameter pin was loaded in double shear. However, 

this bracket was significantly damaged in the first test using the two-bogie system (second test 

overall), and was replaced by three nylon tethers, each with a 17,000-lb (75.6-kN) capacity. The 

four-cable assembly was attached to the nylon tethers with a clevis and is shown attached to the 

bogie in Figure 18.  
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The coupon was attached to two steel tubes, each measuring 13 ft - 1¼ in. (4.0 m) in length. 

The dimensions of the cross sections were 3½ in. x 3½ in. x ⅜ in. (89 mm x 89 mm x 9.5 mm). 

They were welded together in five locations, approximately spaced evenly throughout the length 

of the tubes. The combined assembly was mounted to the bogie with steel brackets, which were 

welded to the tubes. These brackets were placed on top of a stack of steel plates and welded in 

place. The stack of steel plates was then bolted to the frame of the bogie vehicle. An overall view 

of this mounting assembly is shown in Figure 19. 

 

 
Figure 19. Two-Tube Steel Coupon Mounting Assembly 

 Load Cells 

The load frame assembly was mounted such that the attachment brackets were free to rotate 

about a horizontal axis, allowing for horizontal views of the enlarged steel coupons for high-speed 

cameras. Drawings of the load frame assembly are provided in Appendix A. A photo of the 
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assembly is provided in Figure 20. Four concrete-filled steel tubes with cross-sectional dimensions 

of 4 in. x 4 in. x ¼ in. (102 mm x 102 mm x 6 mm) and a length of 16 in. (406 mm) were mounted 

to the concrete bogie block located at MwRSF’s test facility. Holes were drilled through each tube 

and 1-in. (25-mm) diameter threaded rods were place through those holes prior to filling the tubes 

with concrete. The back tubes (closest to the bogie block) included a 2½-in. (64-mm) hole in the 

sides of the tubes. A load cell assembly was inserted into these two holes such that the assembly 

could rotate in one direction (about the horizontal axis). The front tubes were added to stiffen the 

assembly.  

 

 
Figure 20. Load Cell and Mounting Assembly 

 Accelerometers 

An accelerometer system was mounted on the small bogie vehicle near its center of gravity 

to measure the acceleration in the longitudinal, lateral, and vertical directions. Only the 
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longitudinal acceleration was processed, however, due to the response of the cable tether and other 

nonlinear contributions; the force estimates from the accelerometers were unreliable as they 

applied to the steel coupon. Load transducers applied to the anchored end of the coupon were far 

more reliable. 

The first accelerometer system was a two-arm piezoresistive accelerometer system 

manufactured by Endevco of San Juan Capistrano, California. Three accelerometers were used to 

measure each of the longitudinal, lateral, and vertical accelerations independently at a sample rate 

of 10,000 Hz. The accelerometers were configured and controlled using a system developed and 

manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. More 

specifically, data was collected using a DTS Sensor Input Module (SIM), Model TDAS3-SIM-

16M. The SIM was configured with 16 MB SRAM and 8 sensor input channels with 250 kB 

SRAM/channel. The SIM was mounted on a TDAS3-R4 module rack. The module rack was 

configured with isolated power/event/communications, 10BaseT Ethernet and RS232 

communication, and an internal backup battery. Both the SIM and module rack were crashworthy. 

The “DTS TDAS Control” computer software program and a customized Microsoft Excel 

worksheet were used to analyze and plot the accelerometer data. 

The third system, Model EDR-3, was a triaxial piezoresistive accelerometer system 

manufactured by Instrumental Sensor Technology, Inc. (IST) of Okemos, Michigan. The EDR-3 

was configured with 256 kB of RAM, a range of ±200 g’s, a sample rate of 3,200 Hz, and a 1,120 

Hz low-pass filter. The “DynaMax 1 (DM-1)” computer software program and a customized 

Microsoft Excel worksheet were used to analyze and plot the accelerometer data. 

 Digital Photography 

Two AOS VITcam high-speed digital video cameras, one JVC digital video camera, and 

two GOPRO cameras were used to document each test. The AOS high-speed cameras had a frame 
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rate of 4,000 frames per second. All but one of the cameras was placed laterally from the coupon, 

with a view perpendicular to the bogie’s direction of travel. A GOPRO camera was placed 

downstream of the coupon in an orientation that captured the overall view of the test, including 

the coupon, H-barrier (if applicable), cables, and bogies. A Nikon D50 digital still camera was also 

used to document pre- and post-test conditions for all tests. 

 Gauge Length Grid 

On each coupon, a uniform grid was painted for reference in post-test high-speed video 

analysis. The grid was created by printing a vinyl decal with a square pattern. The length of each 

side of the squares was equated to half the width of the critical section of the coupon, or 13/16 in. 

(20.6 mm). The decal was transferred to the coupon and centered longitudinally. Next, in 

anticipation of large strains, plastic yellow spray paint was applied to the coupon in three layers. 

Once the third layer dried sufficiently, the vinyl decals were removed, leaving a checkered grid 

pattern. Each printed vinyl decal included extraneous squares on both sides of the gauge length. In 

these squares, a black “X” was drawn with a permanent marker. The unmarked squares represented 

the gauge length and measured 9¾ in (248 mm). This gauge length was used for all 11 coupons. 

An example of this grid is shown in Figure 21. 

 

 
Figure 21. Gauge Length Grid Data Processing 
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 Coupon Descriptions 

Each coupon shared the same profile footprint. They were enlarged relative to the standard 

size used in quasi-static tensile tests for two reasons. First, the load was applied by towing a bogie 

and recorded by load transducers. Low-speed tests would have been nearly impossible to repeat 

consistently, and the margin of error in the load cells may have been influential. To avoid both 

pitfalls, a large sample, as shown in Figure 5, was used for each coupon. However, the material 

itself, as well as thickness and grain orientation, were different in some tests. Finally, the target 

bogie velocity was subject to change according to the expected strength of the coupon. 

 Test Nos. DFS-L1 and DFS-L2 

Each of these tests utilized A572 Gr. 50 steel, whose mill certificate of conformity is given 

in Appendix B. The thickness of each coupon was 5/16 in. (7.9 mm). Finally, these coupons were 

modified by drilling a ½-in. (12.7-mm) diameter hole in the center of the coupon, creating a stress 

concentration. The target bogie velocity for these tests was 15 to 20 mph (24.1 to 32.1 km/h). The 

coupon was cut parallel to the roll direction, such that the grain orientation was longitudinal. A 

stress concentration was added to both coupons by drilling a ½-in. (12.7-mm) hole in the center. 

Pre-test photos of each coupon are shown in Figures 22 and 23. 

 

 
Figure 22. Test No. DFS-L1, Pre-Test 
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Figure 23. Test No. DFS-L2, Pre-Test 

 Test No. DFS-L3 

This coupon utilized A572 Gr. 50 steel, whose mill certificate of conformity is given in 

Appendix B. The thickness of this coupon was 5/16 in. (7.9 mm). This coupon did not contain a 

stress concentration, but it had a target velocity of 5 to 10 mph (8.0 to 16.1 km/h). The coupon was 

cut parallel to the roll direction, such that the grain orientation was longitudinal. A pre-test photo 

of this coupon is shown in Figure 24. 

 

 
Figure 24. Test No. DFS-L3, Pre-Test 

 Test No. DFS-L3-2 

Test no. DFS-L3-2 was run with the same coupon from test no. DFS-L3 using a target 

velocity of 20 to 25 mph (32.2 to 40.2 km/h). The bogie speed from the previous test did not 

produce a large enough load to induce plasticity in the coupon. The coupon was cut parallel to the 
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roll direction, such that the grain orientation was longitudinal. A pre-test photo of this coupon is 

shown in Figure 25. 

 

 
Figure 25. Test No. DFS-L3-2, Pre-Test 

 Test No. DFS-L4 

This test utilized AASHTO M180 steel, whose mill certificate of conformity is given in 

Appendix B. The thickness of the coupon was 12 gauge (2.67 mm). The target bogie velocity for 

this test was 15 to 20 mph (24.1 to 32.1 km/h). The through-thickness was cut differently for this 

test and measured 2¼ in. (57.2 mm). A pre-test photo of this coupon is shown in Figure 26. 

 

 
Figure 26. Test No. DFS-L4, Pre-Test 

 Test No. DFS-L5 

This test utilized A1011-12B Gr. 50 steel, whose mill certificate of conformity is given in 

Appendix B. The thickness of this coupon was 10 gauge (3.42 mm). The target bogie velocity for 



June 23, 2014  
MwRSF Report No. TRP-03-311-14 

 

47 

this test was 15 to 20 mph (24.1 to 32.1 km/h). A pre-test photo of this coupon is shown in Figure 

27. 

 

 
Figure 27. Test No. DFS-L5, Pre-Test 

 Test Nos. DFS-L6 and DFS-L7 

Test nos. DFS-L6 and DFS-L7 were repeated from test nos. DFS-L4 and DFS-L5, 

respectively, with one additional caveat. A stress concentration was added by drilling a ½-in. (12.7-

mm) hole in the center of the coupons. The target bogie velocity for these tests was 15 to 20 mph 

(24.1 to 32.1 km/h). Cross-sectional widths were 2¼ and 1⅝ in. (57.2 and 41.3 mm) for test nos. 

DFS-L6 and DFS-L7, respectively. Pre-test photos for these coupons are shown in Figures 28 and 

29. 

 

 
Figure 28. Test No. DFS-L6, Pre-Test 
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Figure 29. Test No. DFS-L7, Pre-Test 

 Test Nos. DFS-T1, DFS-T2, and DFS-T3 

Each of these tests utilized A572 Gr. 50 steel, whose mill certificate of conformity is given 

in Appendix B. The thickness of each coupon was 5/16 in. (7.9 mm). The target bogie velocity for 

these tests was 20 to 25 mph (32.2 to 40.2 km/h). The coupon was cut perpendicular to the roll 

direction, such that the grain orientation was transverse. Pre-test photos of these coupons are 

shown in Figures 30 through 32. 

 

 
Figure 30. Test No. DFS-T1, Pre-Test 
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Figure 31. Test No. DFS-T2, Pre-Test 

 

 
Figure 32. Test No. DFS-T3, Pre-Test 



50 

6 TENSILE TEST RESULTS 

 Quasi-Static Material Testing 

 A572 Gr. 50 Steel 

Tensile force-deflection data was obtained from component test results on roadside 

breakaway sign supports in the mid-1990s [58], and the corresponding stress-strain curves were 

likewise collected from literature [59]. In the samples documented from these sources, the yield 

stress of the steel was 67 ksi (462 MPa). However, according to the mill certificate of conformity, 

presented in Appendix B, the yield stress of the steel used in this project was 63.7 ksi (439 MPa). 

Therefore, the stress-strain curve found in previous testing was scaled down to match the material 

used in this report. Scaling was accomplished by multiplying the stress at each point by the ratio 

of the yield stress from the mill certificate to the yield stress reported in literature. The resulting 

stress-strain curve is shown in Figure 33, where failure occurred at a strain of 0.237. The area 

under this curve, or the strain energy density, was 21.0 in.-kip/in.3 (144.7 mm-N/mm3). 
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Figure 33. Scaled Stress-Strain Curve of A572 Gr. 50 Steel [59] to Match 0.439 GPa 

 AASHTO M180 Steel 

Standard W-beam guardrail conforms to AASHTO M180 steel, whose strength 

characterization is abundantly documented in literature. Most recently, a research effort was 

undertaken at the Midwest Roadside Safety Facility to investigate the variational strength of this 

material, and a baseline material model was recommended for use in the LS-DYNA material 

model, *MAT_PIECEWISE_LINEAR_PLASTICITY [60]. The stress-strain curve adopted in the 

current project is shown in Figure 34 where failure occurred at a strain of 0.203. The area under 

this curve, or the strain energy density, was 15.8 in.-kip/in.3 (108.7 mm-N/mm3). 
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Figure 34. Stress-Strain Curve of AASHTO M180 Steel [60] 

 A1011-12B Gr. 50 Steel 

Quasi-static data was not available for this material. As such, the yield stress reported in 

the mill certificate of conformity was used to scale the stress-strain data used for AASHTO M180 

steel. Scaling was accomplished by multiplying the stress at each point by the ratio of the yield 

stress from the mill certificate to the yield stress reported in literature. The scaled stress-strain 

curve used in LS-DYNA is shown in Figure 35. The area under this curve, or the strain energy 

density, was 18.5 in.-kip/in.3 (127.8 mm-N/mm3). 
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Figure 35. Stress-Strain Curve of A1011-12B Gr. 50 Steel 

 LS-DYNA Description of Materials 

The quasi-static stress-strain curves for the preceding materials were used to develop the 

constitutive relationship in LS-DYNA via the material input card *MAT_PIECEWISE_

LINEAR_PLASTICITY. This card uses an 8-point stress-strain curve to control the behavior of 

the material. Strains are input according to the effective plastic strain, i.e., the elastic strain in the 

material is removed. The corresponding stress to the effective plastic strain is also programmed. 

This stress can represent engineering or true stress-strain curves. However, the eighth point in the 

curve is typically adjusted by trial-and-error until the simulated stress-strain response matches 

physical data, and, in this case, engineering stress-strain results from test no. DFS-L3-2 were used 

to calibrate the material model. The points used for each material are summarized in Table 8.  
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Table 8. Summary of LS-DYNA Material Input 

 

 

 Dynamic Coupon Tests 

 Test No. DFS-L1 

During test no. DFS-L1, the bogie reached a speed of 18.1 mph (29.1 km/h), causing nearly 

uniaxial tension in the coupon. The coupon was loaded past its elastic limit around the hole and 

experienced very little necking and even less deformation away from the hole. Highly localized 

ductile failure was observed around the hole, and additional evidence of plasticity was discovered 

in the observation that the plastic spray paint melted off of the coupon near the location of the 

fracture; heat generation can be significant in plastic deformation.  

Force-deflection and energy-deflection curves were created from the load cell data and 

high-speed video analysis and are shown in Figure 36. Yield occurred at 24.7 kips (109.9 kN) and 

increased until an ultimate force of 33.1 kips (147.2 kN) was observed at a displacement of 0.21 

in. (0.5 cm) over the gauge length, resulting in a dynamic strain of 0.022 in./in. (mm/mm). At this 

displacement, the coupon absorbed 5.31 k-in. (0.6 kJ) of energy. The strain energy density at 

fracture was 1.6 in.-kip/in.3 (11.0 mm-N/mm3). The stress-strain curve used in determining the 

SED is shown in Figure 37. Photographs of coupon damage are shown in Figure 38. 

EPS (mm/mm) ES (GPa) EPS (mm/mm) ES (GPa) EPS (mm/mm) ES (GPa)
Point 1 0.000 0.439 0.000 0.449 0.000 0.469
Point 2 0.016 0.473 0.026 0.494 0.033 0.472
Point 3 0.047 0.520 0.051 0.532 0.050 0.509
Point 4 0.089 0.561 0.076 0.548 0.076 0.546
Point 5 0.117 0.586 0.101 0.556 0.101 0.572
Point 6 0.141 0.601 0.152 0.557 0.126 0.591
Point 7 0.185 0.621 0.201 0.558 0.153 0.609
Point 8 2.000 1.800 2.000 1.800 0.999 1.021

A572 Gr. 50 AASHTO M180 A1011-12B Gr. 50Data 
Input
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Figure 36. Force vs. Deflection and Energy vs. Deflection, Test No. DFS-L1 

 

 
Figure 37. Stress vs. Strain, Test No. DFS-L1 
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Figure 38. Post-Impact Photographs, Test No. DFS-L1 

 Test No. DFS-L2 

During test no. DFS-L2, the bogie reached a speed of 16.6 mph (26.7 km/h), causing nearly 

uniaxial tension in the coupon. The coupon was loaded past its elastic limit around the hole and 

experienced very little necking and even less deformation away from the hole. Highly-localized 

ductile failure was observed around the hole, and additional evidence of plasticity was observed 

when the plastic spray paint melted off of the coupon near the location of the fracture; heat 

generation can be significant in plastic deformation.  

Force-deflection and energy-deflection curves were created from the load cell data and 

high-speed video analysis and are shown in Figure 39. Yield occurred at approximately 20 kips 

(89.0 kN) and increased until an ultimate force of 31.2 kips (138.8 kN) was observed at a 

displacement of 0.39 in. (1.0 cm), resulting in an ultimate strain of 0.040 in./in. (mm/mm). At this 

displacement, the coupon absorbed 8.4 k-in. (1.0 kJ) of energy. The strain energy density at 
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fracture was 2.4 in.-kip/in.3 (16.6 mm-N/mm3). The stress-strain curve used in determining the 

SED is shown in Figure 40. Photographs of coupon damage are shown in Figure 41. 

 

 
Figure 39. Force vs. Deflection and Energy vs. Deflection, Test No. DFS-L2 

 

 
Figure 40. Stress vs. Strain, Test No. DFS-L2 
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Figure 41. Post-Impact Photographs, Test No. DFS-L2 

 Test No. DFS-L3 

During test no. DFS-L3, the bogie reached a speed of 12.1 mph (19.5 km/h), causing nearly 

uniaxial tension in the coupon. After the test, the gauge length was measured at 9¾ in. (247.7 mm), 

which was identical to the pre-test gauge length. During the test, load cell data provided a 

maximum tensile force of 32.8 kips (146 kN), which was very near the rated tensile yield force of 

32 kips. The maximum force in this test corresponded to a maximum stress of 64.5 ksi (445 MPa), 

which was slightly higher than the yield stress determined from quasi-static tensile testing and 

reported in the mill certificate of conformity. Since the coupon was loaded dynamically, and since 

there was no measureable permanent deformation, it was concluded that the coupon was not 

stressed beyond its elastic limit.  
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 Test No. DFS-L3-2 

During test no. DFS-L3-2, the bogie reached a speed of 22.5 mph (36.2 km/h), causing 

nearly uniaxial tension in the coupon. The same coupon from test no. DFS-L3 was loaded past its 

elastic limit and experienced necking in the critical section on the side of the load application. 

Ductile failure was observed in the coupon, wherein the surface of the fracture was nearly at a 45-

degree angle. Additional evidence of plasticity was found due to the plastic spray paint being 

melted off of the coupon near the location of the fracture; heat generation can be significant in 

plastic deformation.  

Force-deflection and energy-deflection curves were created from the load cell data and 

high-speed video analysis and are shown in Figure 42. Yield occurred at 33 kips (147 kN) and 

increased until an ultimate force of 38 kips (169 kN) was observed at a displacement of 2.82 in. 

(7.2 cm) through the gauge length, resulting in an ultimate strain of 0.289 in./in. (mm/mm). At this 

displacement, the coupon absorbed 104 k-in. (11.8 kJ) of energy. The strain energy density at 

fracture was 21.0 in.-kip/in.3 (145.0 mm-N/mm3). The stress-strain curve used in determining the 

SED is shown in Figure 43. Photographs of coupon damage are shown in Figure 44. 
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Figure 42. Force vs. Deflection and Energy vs. Deflection, Test No. DFS-L3-2 

 
Figure 43. Stress vs. Strain, Test No. DFS-L3-2 
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Figure 44. Post-Impact Photographs, Test No. DFS-L3-2 

 Test No. DFS-L4 

During test no. DFS-L4, the bogie reached a speed of 16.0 mph (25.7 km/h), causing nearly 

uniaxial tension in the coupon. The thinner steel coupon ruptured along an angle of approximately 

30 degrees, which occurred on the fixed support side of the coupon. Very little necking was 

observed in the coupon. An ultimate strain of 0.240 was observed. However, there was a significant 

amount of plastic deformation around each bolt hole. 

Force-deflection and energy-deflection curves were created from the load cell data and 

high-speed video analysis and are shown in Figure 45. Yield occurred at 12.2 kips (54.2 kN) and 
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increased until an ultimate force of 16.1 kips (71.6 kN) was observed at a displacement of 2.34 in. 

(5.9 cm), resulting in an ultimate strain of 0.240 in./in. (mm/mm). At this displacement, the coupon 

absorbed 32.1 k-in. (3.6 kJ) of energy. The strain energy density at fracture was 13.9 in.-kip/in.3 

(96.0 mm-N/mm3). The stress-strain curve used in determining the SED is shown in Figure 46. 

Photographs of coupon damage are shown in Figure 47. 

Displacements were measured through the gauge length, but forces were recorded by load 

cells. As a result, the measured forces were experienced throughout the coupon. With a narrow 

cross-section, higher stresses would occur in the critical section. It was assumed that fracture in 

this region would occur before damage would accumulate anywhere else in the coupon. However, 

that was not the case for this test. Instead, some energy was absorbed in the plastic deformation of 

the bolt holes. However, the forces measured by the load cells were experienced equally 

throughout the coupon, and displacements were only measured relative to the gauge length. 

Therefore, the force-displacement curves were indicative of the energy in the critical section, as 

well as the corresponding stress-strain curve. 
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Figure 45. Force vs. Deflection and Energy vs. Deflection, Test No. DFS-L4 

 

 
Figure 46. Stress vs. Strain, Test No. DFS-L4 
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Figure 47. Post-Impact Photographs, Test No. DFS-L4 

 Test No. DFS-L5 

During test no. DFS-L5, the bogie reached a speed of 16.0 mph (25.7 km/h), causing nearly 

uniaxial tension in the coupon. The thinner steel coupon ruptured along an angle of approximately 

45 degrees, which occurred on the loaded side of the coupon. Very little necking was observed in 

the coupon.  

Force-deflection and energy-deflection curves were created from the load cell data and 

high-speed video analysis and are shown in Figure 48. Yield occurred at 14.3 kips (63.6 kN) and 

increased until an ultimate force of 14.7 kips (65.4 kN) was observed at a displacement of 2.11 in. 

(5.4 cm), resulting in an ultimate strain of 0.216 in./in. (mm/mm) through the gauge length. At this 

displacement, the coupon absorbed 28.9 k-in. (3.3 kJ) of energy. The strain energy density at 

fracture was 13.6 in.-kip/in.3 (93.9 mm-N/mm3). The stress-strain curve used in determining the 

SED is shown in Figure 49. Photos of coupon damage are shown in Figure 50. 
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Figure 48. Force vs. Deflection and Energy vs. Deflection, Test No. DFS-L5 

 
Figure 49. Stress vs. Strain, Test No. DFS-L5 
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Figure 50. Post-Impact Photographs, Test No. DFS-L5 

 Test No. DFS-L6 

During test no. DFS-L6, the bogie reached a speed of 15.2 mph (24.5 km/h), causing nearly 

uniaxial tension in the coupon. The coupon was loaded past its elastic limit around the hole and 

experienced very little necking and even less deformation away from the hole. Highly localized 

ductile failure was observed around the hole, and additional evidence of plasticity was found due 

to the plastic spray paint being melted off of the coupon near the location of the fracture; and heat 

generation can be significant in plastic deformation.  

Force-deflection and energy-deflection curves were created from the load cell data and 

high-speed video analysis and are shown in Figure 51. Yield occurred at 9.9 kips (44.0 kN) and 

increased until an ultimate force of 11.1 kips (49.4 kN) was observed at a displacement of 0.87 in. 

(2.2 cm), resulting in an ultimate strain of 0.089 in./in. (mm/mm) through the gauge length. At this 
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displacement, the coupon absorbed 4.3 k-in. (0.5 kJ) of energy. The strain energy density at 

fracture was 2.4 in.-kip/in.3 (16.6 mm-N/mm3). The stress-strain curve used in determining the 

SED is shown in Figure 52. Photographs of coupon damage are shown in Figure 53. 

 

 
Figure 51. Force vs. Deflection and Energy vs. Deflection, Test No. DFS-L6 
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Figure 52. Stress vs. Strain, Test No. DFS-L6 
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Figure 53. Post-Impact Photographs, Test No. DFS-L6 

 Test No. DFS-L7 

During test no. DFS-L7, the bogie reached a speed of 16.0 mph (25.7 km/h), causing nearly 

uniaxial tension in the coupon. The coupon was loaded past its elastic limit around the hole and 

experienced very little necking and even less deformation away from the hole. Highly localized 

ductile failure was observed around the hole, and additional evidence of plasticity was found in 

the observation that the plastic spray paint melted off of the coupon near the location of the 

fracture; heat generation can be significant in plastic deformation. 
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Force-deflection and energy-deflection curves were created from the load cell data and 

high-speed video analysis and are shown in Figure 54. Yield occurred at 8.6 kips (38.3 kN) and 

increased until an ultimate force of 10.4 kips (46.3 kN) was observed at a displacement of 0.14 in. 

(0.4 cm), resulting in an ultimate strain of 0.014 in./in. (mm/mm) through the gauge length. At this 

displacement, the coupon absorbed 1.2 k-in. (0.1 kJ) of energy. The strain energy density at 

fracture was 0.8 in.-kip/in.3 (5.5 mm-N/mm3). The stress-strain curve used in determining the SED 

is shown in Figure 55. Photographs of coupon damage are shown in Figure 56. 

 

 
Figure 54. Force vs. Deflection and Energy vs. Deflection, Test No. DFS-L7 
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Figure 55. Stress vs. Strain, Test No. DFS-L7 

 
Figure 56. Post-Impact Photographs, Test No. DFS-L7 
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 Test No. DFS-T1 

During test no. DFS-T1, the bogie reached a speed of 23.5 mph (37.8 km/h), causing nearly 

uniaxial tension in the coupon. The coupon was loaded past its elastic limit and experienced 

necking in the critical section on the side of the load application. Ductile failure was observed in 

the coupon, wherein the surface of the fracture was nearly at a 45-degree angle. Additional 

evidence of plasticity was found in the plastic spray paint that was melted off of the coupon near 

the location of the fracture; heat generation can be significant in plastic deformation.  

Force-deflection and energy-deflection curves were created from the load cell data and 

high-speed video analysis and are shown in Figure 57. Yield occurred at 35 kips (156 kN) and 

increased until an ultimate force of 37.9 kips (169 kN) was observed at a displacement of 2.93 in. 

(7.4 cm), resulting in an ultimate strain of 0.301 in./in. (mm/mm) through the gauge length. At this 

displacement, the coupon absorbed 100.3 k-in. (11.4 kJ) of energy. The strain energy density at 

fracture was 20.3 in.-kip/in.3 (140.2 mm-N/mm3). The stress-strain curve used in determining the 

SED is shown in Figure 58. Photographs of coupon damage are shown in Figure 59. 
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Figure 57. Force vs. Deflection and Energy vs. Deflection, Test No. DFS-T1 

 
Figure 58. Stress vs. Strain, Test No. DFS-T1 
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Figure 59. Post-Impact Photographs, Test No. DFS-T1 

 Test No. DFS-T2 

During test no. DFS-T2, the bogie reached a speed of 24.1 mph (38.8 km/h), causing nearly 

uniaxial tension in the coupon. The coupon was loaded past its elastic limit and experienced 

necking in the critical section on the side of the load application. Ductile failure was observed in 

the coupon, wherein the surface of the fracture was nearly at a 45-degree angle. Additional 

evidence of plasticity was found in the plastic spray paint that was melted off of the coupon near 

the location of the fracture; heat generation can be significant in plastic deformation.  
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Force-deflection and energy-deflection curves were created from the load cell data and 

high-speed video analysis and are shown in Figure 60. Yield occurred at 33 kips (147 kN) and 

increased until an ultimate force of 38.7 kips (173 kN) was observed at a displacement of 2.51 in. 

(6.4 cm), resulting in an ultimate strain of 0.257 in./in. (mm/mm) through the gauge length. At this 

displacement, the coupon absorbed 86.8 k-in. (9.8 kJ) of energy. The strain energy density at 

fracture was 17.5 in.-kip/in.3 (120.8 mm-N/mm3). The stress-strain curve used in determining the 

SED is shown in Figure 61. Photographs of coupon damage are shown in Figure 62. 

 

 
Figure 60. Force vs. Deflection and Energy vs. Deflection, Test No. DFS-T2 
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Figure 61. Stress vs. Strain, Test No. DFS-T2 

 
Figure 62. Post-Impact Photographs, Test No. DFS-T2 
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 Test No. DFS-T3 

During test no. DFS-T3, the bogie reached a speed of 23.1 mph (37.2 km/h), causing nearly 

uniaxial tension in the coupon. The coupon was loaded past its elastic limit and experienced 

necking in the critical section on the side of the load application. Ductile failure was observed in 

the coupon, wherein the surface of the fracture was nearly at a 45-degree angle. Additional 

evidence of plasticity was found in the plastic spray paint that was melted off of the coupon near 

the location of the fracture; heat generation can be significant in plastic deformation.  

Force-deflection and energy-deflection curves were created from the load cell data and 

high-speed video analysis and are shown in Figure 63. Yield occurred at 46.4 kips (206.4 kN) and 

increased until an ultimate force of 47.6 kips (212 kN) was observed at a displacement of 3.04 in. 

(7.7 cm), resulting in an ultimate strain of 0.312 in./in. (mm/mm) through the gauge length. At this 

displacement, the coupon absorbed 143.7 k-in. (16.3 kJ) of energy. The strain energy density at 

fracture was 29.0 in.-kip/in.3 (200.2 mm-N/mm3). The stress-strain curve used in determining the 

SED is shown in Figure 64. Photographs of coupon damage are shown in Figure 65. This 

performance was far different from the preceding test (test no. DFS-T2) of the same material and 

grain orientation, and the yield stress was so much higher than what was rated in the mill 

certificate, that this test was considered corrupt and was not used for subsequent comparisons or 

modeling. 
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Figure 63. Force vs. Deflection and Energy vs. Deflection, Test No. DFS-T3 

 
Figure 64. Stress vs. Strain, Test No. DFS-T3 
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Figure 65. Post-Impact Photographs, Test No. DFS-T3 

 Summary of Dynamic Tensile Tests 

The area under the force-displacement curve represented the energy required to deform the 

coupon and to fracture it. The area under the stress-strain curve, in contrast, represented the strain 

energy density in the coupon through its plastic deformation until fracture. The peak loads, 

deflections, energies, and strain energy densities for each test are summarized in Table 9. 
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 Discussion 

Three steel materials were tested in this research: A572 Gr. 50, AASHTO M180, and 

A1011-12B Gr. 50. Thickness changes were tested, as was the presence of a stress concentration 

and the grain orientation.  

Changes in thickness for Grade 50 steel were analyzed as well. For A572 Gr. 50, 

thicknesses were 5/16 in. (7.9 mm), and for A1011-12B Gr. 50, thicknesses were 10 gauge (3.4 

mm). For samples without a stress concentration (test nos. DFS-L3-2 and DFS-L5), ultimate 

strains were 0.289 and 0.216 in./in. (mm/mm), respectively. Also, strain energy densities at 

fracture were 21.0 and 13.6 in.-kip/in.3 (145.0 and 93.9 mm-N/mm3), respectively. The dramatic 

difference in strain energy density was particularly interesting, and because of the difference, this 

geometrical difference was modeled with LS-DYNA. 

All three materials included stress concentrations in the form of holes drilled in the center 

of the critical cross section. For A572 Gr. 50, tests DFS-L1 and L2 had concentrations, but L3-2 

did not. Ultimate strains were 0.022 and 0.032 in./in. (mm/mm), compared to 0.289 in./in. 

(mm/mm). Strain energy densities were 1.6 and 2.2 in.-kip/in.3 (11.0 and 15.2 mm-N/mm3), 

compared to 21.0 in.-kip/in.3 (145.0 mm-N/mm3). This order-of-magnitude difference clearly 

indicates the need to separately model the two cases. 

Finally, grain orientation was examined for A572 Gr. 50 steel, where the thickness and 

continuity of the material were constants. Specifically, test no. DFS-L3-2, a longitudinal grain 

coupon, was compared to test nos. DFS-T1 and DFS-T2, each a transverse grain coupon. The 

ultimate strain to fracture for test no. DFS-L3-2 was 0.289 in./in. (mm/mm) while the ultimate 

strains to fracture of test nos. DFS-T1 and DFS-T2 were 0.301 and 0.257 in./in. (mm/mm), 

respectively. Similarly, strain energy densities at fracture for test nos. DFS-L3-2, DFS-T1, and 

DFS-T2 were 21.0, 20.3, and 17.5 in.-kip/in.3 (145.0, 140.2, and 120.8 mm-N/mm3), respectively. 
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Without more testing, it could not be determined if this parameter was significant. Instead, steel 

was assumed to behave in an isotropic manner, and grain orientation was not considered further.  



 

 

82 

June 23, 2014  
M

w
R

SF R
eport N

o. TR
P-03-311-14 

Table 9. Summary of Dynamic Tensile Test Results 
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7 NON LOCAL SED FAILURE CRITERION 

 Strain Energy Density Calculation 

As a fundamental law, energy is conserved in the process of relative displacements, and 

these displacements require some external applied force. The relationship between force and 

displacement is known as the constitutive relationship. The area under the curve described by this 

relationship represents the strain energy in the objected being deformed. The exact nature of this 

energy is given in Equation 7.1: 

 

 𝑈 = ∫ 𝐹
𝐷

0
𝑑𝐷 (7.1) 

Where 𝑈 = strain energy 
 𝐹 = force as a function of the displacement 
 𝐷 = displacement  

 

The total strain energy is dependent on the volume of the material, in that a larger object 

would require more energy than a smaller object to produce the same displacement. Therefore, the 

strain energy density becomes a more general, and therefore, useful tool. Conceptually, the strain 

energy density is the strain energy per unit of volume and can be described according to the area 

under the stress-strain curve, as in Equation 7.2: 

 

 𝑢 = ∫ 𝜎
𝜀

0
𝑑𝜀 (7.2) 

Where 𝑢 = strain energy density or SED 
 𝜎 = stress 
 𝜀 = strain 
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Fracture was predicted when the strain energy density at a location exceeded some critical 

value particular to that material. A potential disadvantage of this approach is the dependency on 

mesh density. As aforementioned, the strain energy density is the strain energy per unit of volume. 

Therefore, as the size of an element gets exceedingly small, the strain energy density increases 

rapidly, potentially leading to premature fracture prediction. Similarly, if elements are too large, 

the SED will be too small for the fracture criterion to be met. 

To circumvent this drawback, a non-local methodology was adopted, wherein the length 

scale that defined the non-locality was established to reduce mesh sensitivity in the approximated 

solution. This length scale was defined as a radius around each node in the body. Conceptually, 

there was a link between the center node and every other node within that radius that acted like a 

linearly elastic – perfectly plastic spring. Imagine this spring stretches according to the schematic 

shown in Figure 66. 

 

 
Figure 66. Stress-Strain Curve between Two Nodes 
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This conceptual stress-strain curve was applied to each node within a radius around a node. 

The distribution of the nodes throughout a material does not need to be uniform. However, for the 

sake of demonstration, a uniform grid with a corresponding highlighted length scale is shown in 

Figure 67. The springs that contribute to the center node are highlighted with bold, dark lines. 

 

 
Figure 67. Schematic of Non-Locality around a Node 

The strain energy density at the center node is the summation of the strain energy densities 

in the springs attached to it. Therefore, the spring SEDs were derived from the stress-strain curve 
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in Figure 66. Recall, the SED is the energy under that curve. Therefore, the SED of each truss is 

described in Equation 7.3: 

 

 𝑢𝑡𝑟 = {

1

2
𝐸𝑡𝑟𝜀2

𝐸𝑡𝑟𝜀𝑦(𝜀 − 𝜀𝑦)
 (7.3) 

Where 𝑢𝑡𝑟 = strain energy density between two nodes, like a truss 
 𝐸𝑡𝑟 = truss modulus between two nodes 
 𝜀𝑦 = yield strain of the material between two nodes 
 𝜀 = current strain between two nodes. 

 

Finally, the SED around each node was calculated by summing the SEDs calculated with 

Equation 7.3. This summation is described in Equation 7.4: 

 

 𝑢𝑛𝑜𝑑𝑒 = ∑ (𝑢𝑡𝑟)𝑖
𝑛
𝑖=1  (7.4) 

Where 𝑛 = number of nodes within the length scale 
 𝑖 = node-of-interest 

 

 Calculating 𝑬𝒕𝒓 

The stress-strain relationship between two nodes comprises a part of the sum for the non-

local methodology. This relationship has an elastic part and a plastic part. The elastic part is 

governed by the stiffness of the truss, whereas the plastic part was assumed to be a perfectly plastic 

model, as shown in Figure 66. Therefore, the elastic stiffness of the truss needed to be determined, 

but its influence on the total calculations would be minimal, since the strain energy through the 

elastic region is much smaller than the contribution from the plastic region. Macek and Silling 



June 23, 2014  
MwRSF Report No. TRP-03-311-14 

87 

developed a coupled version of the FEM with a non-local method known as peridynamics [52]. 

To do so, the relationship between two nodes was, in part, described by the following stiffness: 

 

 𝐸𝑡𝑟 = 𝑐∆𝑥4 (7.5) 

 𝑐 =
18𝐸

𝜋𝛿4 (7.6) 

Where 𝐸𝑡𝑟 = effective stiffness of the truss 
 ∆𝑥 = nodal spacing of a uniform mesh 
 𝑐 = force-stretch compliance of a truss 
 𝐸 = Young’s Modulus of the material 

 

To account for weakness in the modulus near free edges, Macek and Silling proposed an 

increase factor based on eigenvalues for an infinitely large plate and the same eigenvalues for the 

plate being investigated [52]. A similar increase was adopted in this research, but the approach 

was simplified by increasing the modulus according to the number of trusses defined within the 

length scale. This was essentially done by determining the number of possible trusses in a body at 

a point sufficiently far from the edge, and then this maximum value was divided by the number of 

trusses within the length scale of the node-of-interest. For nodes far from the edge, the factor was 

1.0. However, for nodes close to free edges, the effective stiffness in the trusses was defined by 

Equation 7.7, where it was assumed that 𝛿 = 3∆𝑥: 

 

 𝐸𝑡𝑟(𝑖) =
2𝐸

9𝜋
[

𝑐𝑜𝑢𝑛𝑡𝑚𝑎𝑥

𝑐𝑜𝑢𝑛𝑡(𝑖)
] (7.7) 

Where 𝐸𝑡𝑟(𝑖) = effective stiffness of the truss at node 𝑖 
 𝑐𝑜𝑢𝑛𝑡𝑚𝑎𝑥 = number of trusses around a node far from any edges 
 𝑐𝑜𝑢𝑛𝑡(𝑖) = number of trusses around node 𝑖 



June 23, 2014  
MwRSF Report No. TRP-03-311-14 

88 

 Failure Criterion  

 General 

High, localized strains near the point of failure in a steel tensile sample indicate that the 

overall strain energy density in the sample is also high and localized. Applying this principle to 

the non-local SED technique, the length scale was instrumental in determining the overall effect 

of necking on the failure of the part. In particular, for very large length scales, the behavior of the 

material inside the length scale would not be significantly different from the overall behavior of 

the material. In other words, the overall global SED at fracture would be uniform through the 

material, effectively filtering the localized deformation from necking out of the analysis. 

Therefore, a proposed critical non-local SED was developed empirically by setting the length scale 

equal to a prescribed increment of the nodal spacing and altering the critical SED until the overall 

behavior of the model matched the SED behavior of the physical testing for the A572 steel coupon. 

Initially, a factor had to be applied to increase the global SED such that the failure in the post-

processing code matched the overall failure of the physical tests. For length scale radii of 2, 3, 4, 

and 5 times the nodal spacing, a logarithmic relationship was developed between this scaling factor 

and the nodal spacing itself, as shown in Figure 68, where the logarithmic expressions are for radii 

of 5, 4, 3, and 2 in descending order. 
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Figure 68. Logarithmic Expressions of Non-Local Critical SED 

The coarsest mesh did not follow the trends established by the other four meshes and was 

excluded from further analysis, therefore requiring at least more than 4 elements through the 

narrowest portion of the model. From Figure 68, the differences at each individual nodal spacing 

are approximately exponential in nature. Therefore, a simplified expression was developed using 

𝛿 = 5.0 as a baseline, from which the scale factor for the failure parameter can be determined. The 

exponential proportions are reported in Table 10, and shown graphically in Figure 69, where the 

exponential expression was determined from the average proportions at each delta magnifier. 

Table 10. Exponential Proportion of the Scaled Failure Parameter 

 

y = -65.17ln(x) + 144.56
y = -93.82ln(x) + 214.02
y = -144.1ln(x) + 332.53
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4 0.740 0.733 0.706 0.700 0.720
5 1.000 1.000 1.000 1.000 1.000
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Figure 69. Exponential Proportion of the Scaled Failure Parameter 

Finally, the proposed failure parameter was determined from the non-local length scale, 

which was defined as the nodal spacing multiplied by the delta magnifier. The critical SED in the 

non-local radius was a function of the delta magnifier and the nodal spacing, as shown in Equation 

7.8: 

 

 𝑆𝐸𝐷𝑐𝑟𝑖𝑡 = 𝑆𝐸𝐷𝑓𝑎𝑖𝑙(−185.4 ln(∆𝑥) + 443.64) × 0.1341𝑒0.4082𝐷 (7.8) 

Where 𝑆𝐸𝐷𝑐𝑟𝑖𝑡 = non local SED at the initiation of fracture 
 𝑆𝐸𝐷𝑓𝑎𝑖𝑙 = global SED at the initiation of fracture 
 ∆𝑥 = nodal spacing in millimeters 
 𝐷 = delta magnifier 

 

The failure criterion holds that when the non-local strain energy density, as determined by 

Equation 7.4, exceeds some critical value, then a fracture surface has been created at or near the 

center node. Mathematically, this is described in Equation 7.9: 
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 𝑆𝐸𝐷𝑐𝑟𝑖𝑡 − 𝑢𝑛𝑜𝑑𝑒 ≤ 0 (7.9) 

 

The critical SED must be determined for each material. In this study, steel tensile data was 

used to calibrate the model such that the global strain energy density in the model matched the 

global strain energy density of the physical tensile test. Here, the reference to the global strain 

energy density was an average SED at the point of fracture. Therefore, the SED is not uniform, 

else fracture would occur simultaneously at numerous points. Since this does not happen, it holds 

that the SED at fracture must be higher than the overall SED in the material, as assumed in 

Equation 7.8. It also holds that the critical SED in the model is a function of the length scale. 

Using LS-DYNA, nodal displacements through the gauge length were recorded and output 

as an ASCII file called “nodout.” This file was read by a post-processing program written by the 

author and included in Appendix C. This program also requires an LS-DYNA-style input deck for 

the *NODE card describe the initial positions of all the nodes in the gauge length. An example of 

the nodal position input file is given in Appendix D. Finally, an input text file is required to enter 

specifics of the model, and an example is given in Appendix E.  

 A572 Gr 50 

Each delta magnifier was studied with each mesh density to determine mesh sensitivity for 

internal energy of the gauge length, cross-sectional force, gauge length displacement, and SED. 

The plots of each of these are given in Figures 70 through 73.  
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Figure 70. Internal Energy for Various Delta Magnifiers 

 
Figure 71. Cross-Sectional Force for Various Delta Magnifiers 
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Figure 72. Gauge Length Displacement for Various Delta Magnifiers 

 
Figure 73. SED for Various Delta Magnifiers 
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convergence rates of the four existing techniques investigated in chapter 4. For a comparison, the 

results for internal energy, cross-sectional force, gauge length displacement, and SED for a delta 

magnifier of 3.0 were plotted with the results of the original four techniques in Figures 74 through 

77.  

 

 
Figure 74. Convergence Comparison for Internal Energy 
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Figure 75. Convergence Comparison for Cross-Sectional Force 

 
Figure 76. Convergence Comparison for Gauge Length Displacement 
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Figure 77. Convergence Comparison for SED 

The convergence study for the prior four techniques revealed that for each parameter, the 

models did not converge entirely on a solution. A simple comparison of the relative difference in 

solution for meshes 2 and 5 were used to demonstrate the SED technique’s effectiveness as a fast-

converging method with less dependency on mesh density. Percent differences of the internal 

energy, cross-sectional force, gauge length displacement, and SED for the two mesh densities are 

shown in Table 11 for the four prior techniques and the new non-local SED technique. 

Table 11. Percent Differences between Mesh 2 and Mesh 5 for Each Technique 
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The strain energy density technique demonstrated the closest Mesh 2 solutions, relative to 

Mesh 5, for internal energy, gauge length displacement, and SED, as highlighted in yellow. For 

cross-sectional force, the Mesh 2 solution was not close to the Mesh 5 solution, but rather, the 

maximum principle strain technique demonstrated the closest solution. 

Cross-sectional force was difficult to accurately capture in the model, regardless of the 

technique employed. The steel coupon underwent a phenomenon known as necking, where a 

highly-localized extreme cross-sectional area reduction occurred. A more interesting measurement 

would have been the peak force in the sample, which occurred immediately prior to the beginning 

of necking. However, this term was optimized in the material model and was identical for each 

technique. Therefore, a comparison of the peak force would not have aided in comparing the 

techniques. Due to the volatile behavior of the force in the cross section just prior to fracture 

initiation, and due to the seeming lack of convergence for this parameter, further investigation may 

be warranted.  

 Additional Material Failure Criterion 

For AASHTO M180 steel, a typical stress-strain curve from literature [60] was used to 

determine the SED at fracture initiation in the steel coupon, which was 15.8 in.-kip/in.3 (108.7 

mm-N/mm3). For A1011-12B Gr. 50 steel, the stress-strain curve used to model this material was 

estimated by scaling the quasi-static steel data from the A572 Gr. 50 steel material. Scaling was 

done according to the yield stress. The SED at fracture initiation was 18.5 in.-kip/in.3 (127.8 mm-

N/mm3). Finally, using a length scale of 3∆𝑥 with the third-coarsest mesh and Equation 7.8, the 

force-deflection curves using the non-local SED technique were plotted for each material with the 

physical test results for coupons without stress concentrations. The same formulation derived from 

the A572 Gr 50 steel material was used for the alternative materials, except the global SED was 
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substituted according to the material’s property. The results are presented in the following sections, 

comparing the modeled results with physical testing. 

 Comparison to Physical Testing 

In this section, comparisons to coupons without any defects are made. This included test 

nos. DFS-L3-2, DFS-L4, DFS-L5, DFS-T1, DFS-T2, and DFS-T3. Categories for comparison 

were defined based on material type. Therefore, the three categories for comparison were A572, 

M180, and A1011. In each category, the force-deflection curves of the physical tests and of the 

corresponding simulations are presented and discussed. Also, the gauge length displacements for 

the models were shortened to represent the gauge lengths in the physical tests. This was done by 

tracking the longitudinal displacement of two nodes, and the selection of the nodes was done by 

ensuring that the necked region was included and that the initial separation distance was 9.75 in. 

(247.7 mm). 

 A572 

Test nos. DFS-L3-2, DFS-T1, DFS-T2, and DFS-T3 utilized A572 Gr 50 steel. The 

corresponding force-deflection curves are shown in Figure 78. For post-processing, a delta 

magnifier of 3.0 was used with Mesh 3 to determine the length scale. The width of the coupon was 

1.675 in. (42.55 mm), resulting in a nodal spacing of 0.135 in. (3.43 mm) and a radius of 0.405 in. 

(10.3 mm). This length scale provided a scale factor of 98.16 to apply to the global SED at fracture 

initiation, according to Equation 7.8. 
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Figure 78. Force-Deflection Comparisons for A572 Gr 50 Steel without a Hole 

 M180 

Test no. DFS-L4 utilized AASHTO M180 steel. The corresponding force-deflection curves 

are shown in Figure 79. For post-processing, a delta magnifier of 3.0 was used with Mesh 3 to 
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a nodal spacing of 0.1875 in. (4.76 mm) and a radius of 0.5625 in. (14.3 mm). This length scale 

provided a scale factor of 70.4 to apply to the global SED at fracture initiation, according to 

Equation 7.8. 
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Figure 79. Force-Deflection Comparisons for M180 Steel without a Hole 

 A1011 

Test no. DFS-L5 utilized A1011-12B Gr 50 steel. The corresponding force-deflection 

curves are shown in Figure 80. For post-processing, a delta magnifier of 3.0 was used with Mesh 

3 to determine the length scale. The discretization was the same as for the A572 model, so the 

nodal spacing was 0.135 in. (3.43 mm), and the radius was 0.405 in. (10.3 mm). This length scale 

provided a scale factor of 98.16 to apply to the global SED at fracture initiation, according to 

Equation 7.8. 
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Figure 80. Force-Deflection Comparison for A1011-12B Gr 50 Steel without a Hole 
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conceptually. However, in this case, with only one node, there is no meaning to the method since 

the FEM requires at least two nodes to define a beam element and three to define a shell element. 

When stress-strain data was available to calibrate the failure parameter for the non-local 

SED technique, a close correlation existed in the force-deflection behavior, as demonstrated for 

A572 Gr 50 steel in Figure 78. The non-local SED technique predicted a deflection of 3.08 in. 

(78.2 mm) through the gauge length. The average displacement of the four tests was 2.69 in. (68.3 

mm), with a maximum of 2.93 in. (74.4 mm). The physical force-deflection data showed very 

limited amounts of necking, and had this phenomenon been included, the displacements may have 

increased. Nevertheless, the non-local SED provided a close approximation for the initiation of 

fracture in the A572 Gr. 50 steel coupons. 

Results for AASHTO M180 steel were not as precise. However, there was a large range of 

possible strength parameters. A stress-strain curve presented in literature was selected and applied 

to the material at hand. However, the actual stress-strain relationship may have differed enough to 

bring the simulation results closer to the physical results. In addition, only one coupon was tested 

in this category, and material properties can be highly variable. Despite these contingencies, the 

model predicted a displacement of 2.52 in. (64.0 mm), and the physical results showed 

displacements of 2.34 in. (59.4 mm). Therefore, if provided with precise stress-strain data, the non-

local SED technique may perform satisfactorily for this alloy. 

Results for the A1011-12B Gr 50 steel did not demonstrate close correlation. However, the 

stress-strain curve for this material was unavailable. Instead, an estimated stress-strain curve was 

used by scaling the same curve from the A572 Gr 50 model according to yield stresses. Also, 

during testing, there arose a complication with the data-capturing technology, such that the digital 

data was lost. Only a screen shot of the voltage versus time curve from the load transducers was 

available. Therefore, no conclusive statement could be made with regard to the effectiveness of 
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the non-local SED technique for this alloy. However, one major difference between this alloy and 

the A572 Gr. 50 steel was the thickness of the coupon. An issue for further investigation is that the 

thickness may play a critical role in the non-local SED technique; specifically, a 2D simplification 

of the technique may not be suitable for thick materials. Exactly what defines a suitable thickness 

was outside the scope of this project. 



June 23, 2014  
MwRSF Report No. TRP-03-311-14 

104 

8 ADDITION OF A STRESS CONCENTRATION 

 Stress Concentration Factor 

Defects in a material can introduce stress concentrations, inducing failure, significantly 

sooner than if the defect was omitted. For example, when a perfectly circular hole is cut in the 

center of a large plate, stresses can be as high as three times the applied stress for uniaxial tension 

[72]. In general, the stress concentration factor is the ratio of observed stress to the stress that 

would be present without a stress concentration factor, as in Equation 8.1: 

 

 𝐾𝑡 =
𝜎𝑚𝑎𝑥

𝜎𝑛𝑜𝑚
 (8.1) 

Where 𝐾𝑡 = stress concentration factor 
 𝜎𝑚𝑎𝑥 = maximum observed stress in the material 
 𝜎𝑛𝑜𝑚 = nominal stress without a defect 

 

The stress concentration factor for a large plate with an elliptical hole in the center and a 

uniaxial stress applied on one boundary was derived at great length by Inglis in 1913 [73]. Because 

the dimensions of the plate were much larger than the dimensions of the hole, Saint Venant’s 

principle could be applied, such that the edges of the plate did not influence the stress field near 

the hole. Inglis’s equation for the stress concentration factor for an ellipse is given in Equation 8.2: 

 

 𝐾𝑡 = 1 + 2
𝑎

𝑏
 (8.2) 

Where 𝑎 =half the length of the major axis of an ellipse 
 𝑏 = half the length of the minor axis of an ellipse 
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For a circle, the major and minor axes of an ellipse are equal; thus, the stress concentration 

factor is 3 for a perfect circle whose diameter is sufficiently small relative to the width and length 

of the plate. 

 Application to SED 

Without modifying the post-processing procedure described in chapter 7, the SED 

approach to predicting failure very closely matched the physical results of test nos. DFS-L1 and 

DFS-L2. The hole drilled in the middle of the coupon significantly reduced the strength of the 

material, such that for a given applied far-field stress, the stresses acting around the circle were 

greatly amplified. The cross-sectional area was reduced relative to the hole-free coupons, so the 

cross-sectional force was divided by a smaller area, and the stresses to yield and failure were 

similar. However, the extreme concentration of stresses induced failure at engineering strains that 

were significantly smaller than the hole-free tests. In other words, strains around the hole became 

highly localized, similar to the phenomenon of necking observed in the hole-free coupons, and 

because of the stress concentration, this localization of strain occurred much earlier, relative to the 

hole-free coupons. 

However, the non-local SED technique was not dependent on stresses alone, but on the 

combined effect of stress and strain. Therefore, it was hypothesized that no alteration was needed, 

even in the presence of a stress concentration. Similarly, it was hypothesized that the length scale, 

as a function of the nodal spacing and delta magnifier, was also independent of the stress 

concentration.  

 Post-Processing Parameters 

Input requirements included the number of nodes in the model, time steps to analyze, nodal 

spacing, delta magnifier, Young’s Modulus, critical global SED, and the material yield stress. Each 

of these parameters is defined in Table 12. 
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Table 12. Post-Processing Parameters for Models with Holes 

 

 

 Comparison to Physical Tests 

In this section, comparisons are made with physical coupons that contained a defect in the 

center. This comparison effort included test nos. DFS-L1, DFS-L2, DFS-L6, and DFS-L7. As 

before, comparisons were made according to material type and included A572, M180, and A1011. 

 A572 

Forces and displacements were greatly reduced when a hole was drilled into the center of 

the coupon. Displacements were an order of magnitude less. The non-local SED failure criterion 

predicted large reductions in both parameters as well, but the physical results were not consistent. 

However, deflections were reliably measured and the simulated results were plausible compared 

to the physical results. The average displacement from the tests was 0.299 in. (7.6 mm), and the 

simulated displacement was 0.331 in. (8.4 mm), a difference of 9.7 percent. The comparison of 

force-deflection curves is given in Figure 81. 

Parameter A572 A1011 M180
No. of Nodes 2,676 2,676 2,172
No. of Steps 300 150 1,000
Nodal Spacing 3.43 3.43 3.81
Delta Magnifier 3.0 3.0 3.0
Young's Modulus (GPa) 200 200 200
Global Critical SED (kN-mm/mm3) 0.145 0.1278 0.1087
Yield Stress (GPa) 0.439 0.468634 0.449
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Figure 81. Force-Deflection Comparison for A572 Gr 50 with a Hole 

 M180 

Material modeling concerns for this material were documented in chapter 7. Notably, the 

stresses were significantly larger in the model than in the physical test results. This translates 

directly to forces as well. The modeled displacement was 0.495 in. (12.6 mm). The single test 

conducted in this report produced a displacement of 0.702 in. (17.8 mm), a difference of 29.5 

percent. The force-deflection comparisons are given in Figure 82. 
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Figure 82. Force-Deflection Comparison for M180 with a Hole 

 A1011 

Recall that the stress-strain curve was estimated by scaling the stresses according to the 

yield stresses of A572 Gr 50 steel and A1011-12B Gr 50 steel. They should have similar yield 

stresses. However, the force-deflection curves in Figure 83 show an upward shift in strength and 

an exaggerated displacement in the gauge length for the simulated results, similar to the hole-free 

coupon. This sample had a reduced through-thickness, and it was assumed that the non-local SED 

technique could perform adequately without modification. However, these results indicate 

otherwise. 
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Figure 83. Force-Deflection Comparison for A1011-12B Gr 50 with a Hole 

 Discussion 

The results of the A572 Gr. 50 steel simulation and physical tests demonstrated plausibility 

in the technique. In fact, the forces were very close to each other and deflections at fracture 

initiation were within 10 percent, comparing the simulation to the average of the physical tests. 

This was the only material that was calibrated with actual test data, and as such represents the best-

case scenario for comparative analyses.  
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accurate, given the unusual response of the steel. Therefore, no conclusive statement can be made 
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observed in the physical test. This coupon’s most significant difference from previous coupons 

(notably the A572 Gr. 50 coupons) was its thickness, which was less than half that of the A572 

coupons. Therefore, considering that no correction was made for thickness, the only conclusion 

that can be derived from this material is that thickness plays a critical role in the non-local SED 

technique. 
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9 EXAMPLE APPLICATION – W-BEAM GUARDRAIL 

 Background Research 

Quasi-static tensile testing has been conducted on standard W-beam guardrail splices using 

a large uniaxial tension device [74]. In this series of testing, Ray reported a maximum tensile force 

of 98.5 kips (438 kN). However, maximum tensile forces in full-scale crash testing from previous 

testing done at the Texas Transportation Institute (TTI) [74] never exceeded 73.3 kips (326 kN). 

Also, in the quasi-static tests, failure occurred as bolts were pulled out of the holes and some 

longitudinal tearing occurred. There was no lateral rupture, like that observed in full-scale crash 

tests. Therefore, it was concluded that rail rupture was not likely related to the axial capacity of 

the rail. A photograph of the quasi-static tensile test results alongside the results of TTI’s study are 

shown in Figure 84 [75]. 

 

   
Figure 84. Rail Splice Failures: Quasi Static Tensile Test Results (Left) and TTI Full-Scale 

Testing Results (Right) [74,75] 

Rail splice rupture was observed in a full-scale crash test where the guardrail system was 

installed over a curb [76]. The test was conducted using a 4,363-lb (1,979-kg) pickup truck, an 

impact angle of 24.5 degrees, and a speed of 64.1 mph (103.2 km/h). The rail ruptured at a splice, 
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allowing the vehicle to pass behind the test article and, ultimately, causing the test to fail. A photo 

of the rail rupture is shown in Figure 85. 

 

 
Figure 85. Ruptured Rail Installed Over a Curb [76] 

In an effort to improve the shape of a W-beam guardrail section, a series of quasi-static 

tensile tests were conducted at the Midwest Roadside Safety Facility in the late 1990s [77]. Unlike 

the results reported by Ray et al, the failure mechanism in these tests was similar to that shown in 

Figure 85. In fact, tensile loads ranged from 113.6 to 126.3 kips (505.3 to 561.8 kN). Rail rupture 

resulting from these loads can be seen in Figure 86. 
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Figure 86. Rail Rupture from Quasi-Static Tension Testing at MwRSF [77] 

Finally, an ongoing research effort involving a W-beam guardrail system was crash-tested 

near the upstream end of the system. The 2270P vehicle induced enough load in the rail to cause 

rupture away from any slice or rail slot location. Since there was no stress concentration in the 

geometry of the rail, the only explanation for the rupture was that the impact vehicle created a 

stress concentration in the rail by penetrating it with a sharp, rigid point. Had this event been 

avoided, rail rupture may have still occurred, but it would have been at a splice location. The 

question is, assuming rail rupture was a certainty, how much longer the rail would have remained 

intact. A picture of the ruptured rail element is shown in Figure 87. Similar to the curb testing, this 

rail rupture allowed the vehicle to pass behind the rail element, subsequently leading to the failure 

of the test article. 
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Figure 87. Rail Rupture from 2270P Impact 

 Modeling with SED Failure Criterion 

The potential for using the SED failure criterion was demonstrated with a model of a 12.5-

ft (3.8-m) section of standard W-beam guardrail. Each end of the beam was constrained with a 

boundary condition, where one end was fixed against motion and the other end was prescribed a 

translational motion along the axis of the beam. A load curve was used to define the motion, where 

at 0.1 ms, the velocity was 22.4 mph (10 mm/ms), and this velocity was maintained throughout 

the simulation. The model included 68,742 shell elements and 66,755 nodes. The average nodal 

spacing was approximately 0.22 in. (5.5 mm). 

A piecewise plastic material model was used to govern the relationship between stresses 

and strains in the model. The material card used eight data points to describe the constitutive 

relationship, identical to the material model used previously for AASHTO M180 steel. The typical 

ultimate strength reported by Schmidt, et al [60] was 80.8 ksi (557 MPa). With a cross-sectional 
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area of 1.52 in.2 (979.6 mm2) through the rail at the location of the splice bolts, the expected 

maximum force in the guardrail was 122.7 kips (546 kN). 

 Splice Holes 

Nodal displacements were recorded around one set of splice holes in the rail. For 

robustness, the nodal displacements around the rail slots were also recorded, but the reduced cross-

sectional area at the splice location would intuitively indicate that it was the point of rail rupture. 

The failure strain in the material model was set to 10.0, sufficiently larger that the plastic failure 

strain in the material. Then, once the LS-DYNA model was finished simulating, the nodal 

displacements were analyzed with a non-local delta magnifier of 3.0, resulting in a radius for the 

non-local length scale of 0.66 in. (16.8 mm). 

Four models were created, each with a different material card, where the theoretical low 

strength, theoretical high strength, baseline strength, and existing strength from literature were 

modeled according to Schmidt, et al [60]. The true stress-strain curves implemented in LS-DYNA 

are shown in Figure 88. 
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Figure 88. Stress-Strain Curves Implemented in LS-DYNA for W-Beam Models 

For the baseline model, the SED failure criterion predicted crack initiation at node 71802 

with a force of 136 kips (605 kN) and a deflection of 1.883 in. (47.8 mm) measured between the 

centers of the splices. The total energy at the time of failure was 219.8 kip-in. (24.8 kJ). The 

modeled rail and location of the fracture initiation are shown in Figure 89. The force-deflection 

curve and energy-deflection curves are shown in Figure 90. 
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Figure 89. W-Beam Guardrail Model – Splice Failure 

 
Figure 90. Force-Deflection and Energy-Deflection Curves for W-Beam Rail Splice 

The 136-kip (605-kN) tensile force predicted by the model with the SED failure criterion 

was about 8% higher than the maximum force reported by MwRSF [77]. Therefore, a bracketed 

model, including theoretically low and high strengths, was created and analyzed. The critical, 

global SED for each model was scaled using the area under the curves in Figure 88. The baseline 

model was used for AASHTO M180 steel coupons, as documented in this report. The areas under 
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the curves for the theoretically low and high curves, as well as the curve taken from literature, 

were 10.1, 17.2, and 11.1 in.-kip/in.3 (69.7, 118.8, and 76.8 mm-N/mm3), respectively. Upon doing 

so, the model with the critical, global SEDs predicted a theoretically low force of 103 kips (458 

kN) and a theoretically high force of 147 kips (654 kN). The constitutive model taken from 

literature predicted a force of 117 kips (520 kN). 

 Discussion 

The force at which rail rupture will occur has been the subject of multiple investigations, 

and a clear answer has not been readily found. Quasi-static testing may not even induce the correct 

failure mechanism observed in full-scale crash testing. In other cases, quasi-static testing did 

reproduce the correct failure mechanism observed in full-scale crash testing, which is known to be 

lateral rupture starting at a bolt hole on the W-beam corrugation.  

Full-scale crash tests where the rail was instrumented indicated rail tension forces less than 

73.3 kips (326 kN). However, loads from these tests can be applied over very small areas, 

effectively puncturing the rail and creating additional stress concentrations and weaker cross-

sections. Bending moments in the rail element may also contribute to exceptionally high stress in 

the material, effectively requiring less far-field applied stress on the rail to induce rupture at a 

stress concentration. 

If dynamic effects are not considered, as they were neglected in the coupon modeling, then 

the results published by MwRSF in the late 1990s may be indicative of the forces in a W-beam rail 

in pure tension, owing to the failure mechanism observed in their tests. Forces ranged from 113.6 

to 126.3 kips (505.3 to 561.8 kN). Both of these tested values fall within the theoretical low and 

high forces predicted by the model with the SED failure criterion, which ranged from 103 to 147 

kips (458 to 654 kN). 



June 23, 2014  
MwRSF Report No. TRP-03-311-14 

119 

 Conclusion and Recommendations 

The SED failure criterion was shown to predict the initiation of fracture. This conclusion 

is based on a wide range between the theoretical low and high forces, which covered a wide range 

of tensile test data. However, to ensure confidence in the model, a standard-sized coupon should 

be cut out of the rail of interest and tested quasi-statically. Uncertainty in the constitutive 

relationship was shown in chapters 7 and 8 to significantly reduce accuracy in the models, as 

expected. Thus, a new model should be created with a FEM program, such as LS-DYNA, and the 

critical, non-local SED should be adjusted until the global SED in the modeled coupon matches 

the corresponding physical data. To make this calibration, a minimum of 8 elements should be 

used through the width of the material, with a delta magnifier of at least 2.0. 

Crack propagation was not investigated in this research. Therefore, for a complete 

application to modeling W-beam fracture in full-scale crash testing, a more in-depth study needs 

to be completed to determine propagation tendencies and their relations to the non-local SED. 
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10 CONCLUSIONS AND RECOMMENDATIONS 

 Summary 

Mesh sensitivity in crack prediction has inherently limited the applicability of traditional 

failure criteria in the FEM. However, in recent years, the implementation of non-local modeling 

platforms has generated precise models of crack onset and propagation. However, in general, these 

platforms are computationally demanding and not currently suited to large-scale models, such as 

a 175-ft (53.3-m) W-beam guardrail system. Therefore, a non-local technique was implemented in 

a commercial FEM code, LS-DYNA, wherein the strain energy density was estimated at each node 

in the model and compared to a critical strain energy density unique to that material.  

The critical SED for the material was determined from quasi-static tensile testing obtained 

in literature. The model itself was simulated using shell elements and a plastic material model 

where the failure parameter was set significantly high. The nodal displacements were recorded in 

an output file every 0.01 ms and were used in a post-processing code developed by the author. 

This code is described in chapter 7, and the source code is given in Appendix C. A length scale 

was described as a function of the nodal spacing in the model, and each node within that length 

scale was used to determine the SED at the central node. The relationship between each pair of 

nodes was assumed to be similar to an elastic, perfectly plastic spring. The SED calculated between 

each pair of nodes was summed up over the region with a radius equal to the length scale. When 

this summation equaled or exceeded the critical SED for the material, the node was said to be the 

site of fracture initiation if it were the first to meet the failure criterion. 

The SED failure criterion was determined for A572 Gr. 50 plate steel, A1011-12B Gr 50 

plate steel, and standard W-beam guardrail steel (meeting AASHTO M180 specifications). Then 

dynamic component tests were conducted using bogie test vehicles to apply tensile load. 

Deformations were captured with high-speed video and used to determine strain as a function of 
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time. Load cells were used to capture the force in the coupon, also as a function of time. Then, the 

two were cross-plotted to obtain force-displacement data, which was converted into engineering 

stress-strain curves. The area under the stress-strain curves was identical, by definition, to the strain 

energy density and was used to validate the model for the two material types.  

Additionally, a stress concentration and a reduced cross-sectional thickness were modeled 

and tested for each material. Nothing but the geometry of the part was changed in the model, 

including the calculation of the non-local SED failure criterion.  

Mesh sensitivity was investigated in common failure criteria used in LS-DYNA. Then the 

same investigation was applied to the non-local SED failure criterion. This was done for a coupon 

with and without a hole. 

Next, the SED failure criterion was applied to a full-length, standard section of W-beam 

guardrail. Nodal displacements around splice bolt holes were recorded and post-processed using 

the critical, global SED failure criterion for AASHTO M180 steel. 

 Conclusions 

High-strength steel does not exhibit significant strain rate effects, as shown by test nos. 

DFS-L3 and DFS-L3-2. Therefore, strain rate effects were not considered relevant in the current 

formulation of the SED failure criterion. However, this inclusion could be made with further 

investigation for other material types, such as polymers or viscoplastic materials. 

In addition, the grain orientation caused by the direction of rolling in the manufacturing 

process did not influence the material’s behavior. Therefore, the steel could be considered 

isotropic, so long as it was standard structural plate steel. This may not be the case for structural 

shapes requiring multiple rolls and other deformations, which may enhance the effect of grain 

orientation. 



June 23, 2014  
MwRSF Report No. TRP-03-311-14 

122 

Within the realm of virtual reality, several failure criteria were studied to obtain the SED 

at fracture in several different mesh densities. It was demonstrated that these failure techniques 

induce mesh dependence and, at best, have limited convergence for the densest mesh. In contrast, 

the SED failure criterion demonstrated a rapid convergence with coarse even meshes. As a result, 

this procedure may potentially be implemented, without undue expense, to predict the onset of 

fracture in a material. 

In addition to reduced mesh sensitivity, the SED failure criterion was able to predict the 

onset of fracture in a material with a stress concentration without recalibrating the failure 

parameter, specifically for A572 Gr. 50 steel, for which more data was available for the material 

model.  

The reduced strength and ductility predicted by the SED failure criterion with a stress 

concentration can potentially be associated with a stress concentration factor. However, the early 

onset of localized straining around the holes, known as necking, led to high non-local SED values 

at the nodes around the hole, and as such, no additional considerations were required to account 

for the stress concentration.  

The non-local SED calculated at a node said to be in failure could be as much as 100 times 

larger than the global failure SED for the material. This was inherently a function of the length 

scale, where large length scales incorporated more slightly deformed areas, thus lowering the 

overall strain energy density. Effectively, the non-local SED is a composite average within the 

radius, and the more non-deformed portions that are included, the smaller the non-local SED at 

the node will be. For large length scales, the critical SED for a node would have to be increased, 

possibly due to the fact that more nodes are contributing to the summation used to calculate the 

SED. This relationship was not studied in depth and should be considered in future studies. 



June 23, 2014  
MwRSF Report No. TRP-03-311-14 

123 

It was thought that a length scale needed to be determined for the coupon, either as a 

function of geometry or of mesh density. Formulations relying solely on geometric considerations 

could not be derived as part of this research effort, but they do represent a possible avenue for 

further investigation. When formulations were based on nodal spacing, the size of the radius 

fundamentally governed the calculation of the non-local SED. Therefore, an empirical relationship 

was developed to adjust the failure parameter for the SED based on the radius of the length scale. 

Upon doing so, results for internal energy, gauge length displacement, and global strain energy 

density were nearly identical for meshes with 8 elements and 20 elements through the critical 

section of the coupon. 

When the same approach was applied to coupons with stress concentrations in the form of 

holes, the results were approximately as precise as without stress concentrations. This indicates 

the plausibility of using the non-local technique without adjusting it to account for the stress 

concentration. However, further testing is required to more fully evaluate the model. 

Finally, when the SED failure criterion was applied to a standard-length section of W-beam 

guardrail, tensile forces at rupture theoretically ranged from 103 to 147 kips (458 to 654 kN). 

When the material model that was found in literature was used, the SED failure criterion predicted 

a tensile force at rupture of 117 kips (520 kN). Tensile testing reported in literature indicated a 

failure load between 113.6 to 126.3 kips (505.3 to 561.8 kN). Therefore, it was concluded that the 

non-local SED failure criterion, using the material model found in literature, was able to accurately 

predict the maximum load in the rail prior to rupture. However, with such large ranges for 

constitutive relationships, it is evident that specific tensile testing should be conducted based on 

coupons that have been cut from the same heat of steel used to make the W-beam rail. With this 

data, more conclusive evidence could be ascertained for comparison with the model. 
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 Recommendations 

The results contained herein are especially pertinent to A572 Gr. 50 steel, whose certified 

yield stress is near 63.7 ksi (439 MPa). The material tested in this report had a carbon content near 

the bottom of the range applicable to this grade of steel. If the yield and ultimate stresses of the 

material are close, then it is recommended that the effective plastic stress-strain curves used in LS-

DYNA be scaled up or down, accordingly. However, if the differences are deemed significant, 

quasi-static tensile test data should be obtained for the material.  

Likewise, if the A1011-12B steel or W-beam material properties are known and differ 

significantly from those used in this report, then accurate data should be obtained. As demonstrated 

by Schmidt et al. [60], this is a highly probable scenario.  

When steel rupture is a legitimate concern, an analysis should be conducted to ensure this 

potentially catastrophic failure mechanism is avoided. Traditionally, this would call for over-

designed elements, since a reliable and usable method for predicting fracture has not been readily 

available. The non-local SED failure criterion provides a solution to this enigma and should be 

employed whenever fracture is possible (intentionally or otherwise). An example was given 

wherein rail rupture was predicted to happen in a section of W-beam guardrail.  

Mesh sensitivity comparisons for the non-local SED technique showed that 4 elements 

through the width of the critical section was an inadequate number to define a non-local length 

scale. At 8 elements through the critical section, the technique demonstrated remarkable 

insensitivity to mesh density as it pertains to the prediction of displacement, internal energy, and 

strain energy density of the steel at the point of fracture initiation. 

Early attempts to produce user-defined material models for LS-DYNA were stalled when 

it was discovered that the architecture of the code disallowed for the possibility of storing the strain 

energy density of an element as a history variable. Had this not been the case, the user-defined 
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FORTRAN code could have been altered to examine a certain number of elements defined by a 

length scale at one time, rather than a single element at a time. This would convert the local 

discretization into a non-local discretization. Then the SED of all the elements in the new length 

scale would contribute to the failure criterion of the central element. A modification to the user-

defined material model code has been recommended to and received by the support staff at LSTC. 
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11 LIMITATIONS AND FUTURE WORK 

 Limitations to the Current Work 

As few as one coupon was available to compare physical tests with the simulated results. 

Material variability alone can significantly alter the properties of any given sample. With more 

coupons available for testing, an aggregate average could be used for comparison to the model, 

and theoretical low and high strength values could be assessed. With this effort, an analyst would 

be able to determine if the material would be safe from rupture (theoretical low strength) or if the 

material would certainly rupture (theoretical high strength). 

High-speed dynamic tensile tests were conducted on a common structural steel grade, but 

the observed yield and ultimate stresses matched the quasi-static test results reported in the mill 

certificate of conformity. As a result, strain rate effects were neglected. However, if the material 

of interest exhibits significant strain rate effects, an allowance in the calculation of the SED would 

be required. 

Also, testing was conducted in temperatures well above the ductile-to-brittle transition 

temperature for steel. However, if the temperature is significantly different from room temperature 

(where quasi-static testing was done), and if that significant difference induces dissimilar material 

behavior, then quasi-static testing may need to be repeated at the desired temperature. This holds 

true for all materials, where if a material is subjected to extreme cold, but normally tested at room 

temperature, the test procedure may need to be altered.  

Grain orientation was altered in this study for A572 Gr. 50 plate steel. Coupons were cut 

either perpendicular or parallel to the roll direction. However, the material behaved the same for 

both directions, implying that grain orientation was insignificant for plate steel under dynamic 

loading. However, other steels are subjected to multiple rolls and deformations to produce a 

desired shape. For example, A500 Gr. C steel is commonly used in tubes. This material can have 
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a reduction of nearly 50% in toughness when the grain orientation is perpendicular to the direction 

of applied load. Therefore, if the material under consideration is highly susceptible to grain 

orientation, then quasi-static tensile testing needs to be conducted for the grain orientation of 

interest. 

Only tensile loads were applied in the current implementation of the SED failure criterion. 

This produced primarily Mode I failure in the material. Similarly, the physical testing phase did 

not extend to other loading modes. As a result, before confidence can be assured in mixed-mode 

loading, more testing is required in various load configurations. 

Thin shells were assumed for each model, despite the fact that the thickest coupons were 

5/8 in. (7.9 mm). When the thickness was reduced for a different material with the same nominal 

yield stress, the results of the non-local SED did not adhere to physical test results. This indicates 

that the non-local SED loses accuracy much the same way that an assumption of plane stress loses 

accuracy if the material is too thick. Therefore, the current formulation of the non-local SED is 

limited to thin materials, where plane stress is an acceptable assumption. 

 Recommendations for Future Work 

The XFEM has demonstrated the potential for crack modeling, both initiation and 

propagation, for implicit applications. Specifically, the theory has been implemented in ABAQUS. 

However, the implementation of the theory in LS-DYNA has only recently been made. At the time 

of the current research effort, the XFEM shell section card in the LS-DYNA input deck required 

the use of a specific material model, which was only applicable to solid elements. The conflict of 

element type prevented an in-depth investigation of the theory. When the explicit version of the 

XFEM in LS-DYNA is made functional, it should be investigated as a potential solution to fracture 

problems in roadside safety engineering. For it to be beneficial, it should demonstrate a level of 

mesh independence similar to the non-local SED failure criterion outlined in this report. 
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In addition, peridynamics has been implemented in ABAQUS via truss elements, which 

were representative of the bonds described in the peridynamic theory. Truss elements can also be 

used in LS-DYNA to the same end. Trusses can be controlled with a user-defined material model, 

such that the constitutive relationship adheres to the peridynamic theory, which would include a 

provision for failure. The current limitation to this approach is in the contact performance of 

surfaces modeled with trusses. In roadside safety applications, this contact can be crucial given the 

level of entropy often experienced in such applications. Perhaps the truss elements can be 

embedded in null shell elements, where the latter would provide the contact definitions. 

In the current research effort, the SED failure criterion was implemented with a post-

processing, user-developed program. Nodal displacements were calculated in LS-DYNA and used 

to calculate the non-local SED at each node for each time step. However, failure in the model was 

defined by the first node to meet the SED failure criterion. As a result, results that followed were 

no longer valid and crack growth could not be studied. This finding was considered acceptable in 

the scope of the project, wherein fracture onset was desired.  

Fracture prediction could become more robust if the SED failure criterion is implemented 

directly into LS-DYNA. One possible avenue to do so lies in the algorithm for constrained, tied 

nodes with failure. Currently, this option requires a failure strain to release nodes from one another. 

This failure flag could be modified to access a subroutine that takes for its input a non-local length 

scale, a material yield stress and Young’s modulus, and a non-local SED at failure. Then it would 

output the result of the failure check to the tied nodes algorithm, wherein if the failure criterion is 

met, the nodes would be released from one another. Application of this procedure would require a 

non-local modification to the standard method of element calculations, which are inherently local.  

Another possible avenue for implementing the SED approach in LS-DYNA may lie in the 

user-defined failure subroutine for some material models, such as *MAT_024. If the failure strain 
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is set to a negative number, the code looks to a subroutine in a FORTRAN source code that can 

control failure in several ways. Currently, only the incremental change in the SED is fed into the 

subroutine and there are no history variables available to the user. Therefore, the cumulative SED 

for the element cannot be determined and used as a failure criterion. Additionally, the material 

model is inherently local. This could be mitigated by using *MAT_NONLOCAL, where the user 

could specify a length scale similar to the one recommended in this study. Combining this 

additional material description with a two-dimensional history variable (say HSV[i,j]), the SED 

between the central node, i, and all other nodes within the length scale, j, could be stored. Then a 

second one-dimensional history variable could be used to track the summation of pairwise SEDs. 

This summation would be the non-local SED at the central node and would be compared to the 

critical non-local SED. 

Also, the non-local SED technique has exhibited a dependence on thickness. Therefore, 

more consideration needs to be given to a 3-dimensional formulation of the technique. This can be 

simply accomplished by replacing shell elements in the local FEM model with solid elements. 

Then, instead of defining a length scale with x and y coordinates forming a circle, the length scale 

would be described by all three coordinates, forming a sphere. This would increase the number of 

nodes within the length scale a great deal and as a result, was not attempted in the current research 

effort. It was shown that there is a minimum number of nodes required within the non-local length 

scale for the 2-dimensional formulation. Therefore, it follows that there is also a minimum number 

of nodes in all three directions, indicating that there may be a minimum number of solid elements 

needed through the thickness of the part.  

The derivation contained herein was for A572 Gr. 50 steel, and it was empirically 

determined. From the relationships of the empirical data, it appeared that the critical SED around 

a node had to be scaled up to account for the summation of several nodes within the length scale. 
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This scaling was accomplished using natural logarithmic and exponential operations. The 

coefficients and constants used in the scaling formula were only based on empirical data. Further 

efforts should be undertaken to more fully understand the physical meaning of these parameters. 

Lastly, more physical tests need to be conducted to ensure that the material behavior is not 

an extreme example. Likewise, stress-strain data needs to be gathered and implemented to provide 

confidence in predictive capability, as opposed to estimating strengths according to a scaling 

process of yield stresses. If these additions to the test matrix still do not solve the disparities in the 

predicted-versus-tested results for coupons with stress concentrations, then the possibility of 

modifying the post-processor algorithm may need to be discussed. 
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13 APPENDICES 

Appendix A. Dynamic Component Test Setup Details 
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Figure A-1. Detail of Test Setup 
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Figure A-2. Load Cell Assembly and Coupon Mounting Frame 
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Figure A-3. Load Cell Assembly Details 
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Figure A-4. Coupon Mounting Bracket Details 
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Figure A-5. Coupon Mounting Bracket Part Details 
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Figure A-6. Part Details for the Load Cell Assembly 
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Figure A-7. Anti-Rotation Components of Load Cell Assembly 
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Figure A-8. Bolts and Threaded Rod of the Load Cell Assembly 
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Figure A-9. Concrete-Filled Tubes Attached to the Bogie Block 
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Figure A-10. Enlarged A572 Gr 50 Steel Coupon 
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Figure A-11. Detail of Clevis Used to Connect Coupon to Bogie 
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Figure A-12. Bill of Materials for Dynamic Component Testing
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Appendix B. Material Specifications 
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Figure B-1. A572 Gr 50 Steel Coupon
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Figure B-2. A1011-12B Gr 50 Thin Steel Coupon
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Figure B-3. AASHTO M180 Steel Coupons
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Appendix C.  FORTRAN Post-Processing Code
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program nodal_analysis 

 

!============================================================= 

! Declare variables 

!============================================================= 

integer::i,nodes,steps,f,t,nid2,j,count_max 

 

integer,allocatable::nid(:,:),count(:),nid3(:),index(:) 

integer,allocatable::X_node(:),count_nom(:) 

 

character::fluff 

 

real::delta1,E,SED_crit,x2,y2,dist,factor, node_spacing 

real::sig_y,e_y,sig_y_t,SED_crit_n,Fail 

 

real,allocatable::time(:),x(:,:),y(:,:),YM(:) 

real,allocatable::SED_node(:,:),dist_0(:,:),dx(:,:),dy(:,:) 

real,allocatable::e_y_t(:),SED_truss(:,:) 

 

!============================================================= 

! Open input and output files 

!============================================================= 

OPEN(unit=100,file='nodout') 

OPEN(unit=101,file='nodes.k') 

OPEN(unit=102,file='input.txt') 

OPEN(unit=200,file='output.txt') 

 

write(200,*)"Nodal Failure Times" 

write(200,*)"      nid      time" 

 

!============================================================= 

! Read 'input.txt' file (unit = 102) 

! Calculate length scale and failure scale factor 

!============================================================= 

read(102,*) 

read(102,*)nodes 

read(102,*) 

read(102,*)steps 

read(102,*) 

read(102,*)node_spacing 

read(102,*) 

read(102,*)factor 

read(102,*) 

read(102,*)E 

read(102,*) 

read(102,*)SED_crit 

read(102,*) 

read(102,*)sig_y 

 

delta1=factor*node_spacing 

 

Fail=(-185.4*log(node_spacing)+443.64)*0.1341*exp(0.4082*factor) 
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SED_crit_n=Fail*SED_crit 

 

e_y=sig_y/E 

sig_y_t=sig_y 

 

!============================================================= 

! Allocation and Formatting 

!============================================================= 

allocate(time(steps+1),x(steps+1,nodes),y(steps+1,nodes)) 

allocate(nid(steps+1,nodes),e_y_t(nodes)) 

allocate(SED_node(steps+1,nodes),dist_0(nodes,nodes)) 

allocate(dx(steps+1,nodes),dy(steps+1,nodes)) 

allocate(count(nodes),YM(nodes),strain(steps,nodes)) 

allocate(stress(steps,nodes),SED_truss(steps,nodes)) 

 

10 FORMAT(I10,F12.5,F12.5) 

20 FORMAT(A104,F12.5) 

 

!============================================================= 

! Input 

!============================================================= 

read(101,*) 

read(101,*) 

do i=1,nodes 

  read(101,*)nid(1,i),x(1,i),y(1,i) 

end do 

 

do f=1,4 

  read(100,*) 

end do 

 

do t=1,steps 

    read(100,*) 

    read(100,*) 

    read(100,*) 

    read(100,20)fluff,time(t) 

    read(100,*) 

    read(100,*) 

  do i=1,nodes 

    read(100,10)nid(t,i),dx(t,i),dy(t,i) 

    x(t,i)=x(1,i)+dx(t,i) 

    y(t,i)=y(1,i)+dy(t,i) 

  enddo 

  do f=1,(nodes+6) 

    read(100,*) 

  end do 

end do 

 

!============================================================= 

! Initial truss lengths and number of trusses around each node 

!============================================================= 
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count_max=0 

 

do i=1,nodes 

  do j=1,nodes 

    nid2=nid(1,j) 

    x2=x(1,j) 

    y2=y(1,j) 

    dist_0(i,j)=sqrt((x2-x(1,i))**2+(y2-y(1,i))**2) 

    if(nid2.ne.nid(1,i))then 

      if(dist_0(i,j)<=delta1)then 

          count(i)=count(i)+1 

      end if 

    end if 

    if(count(i)>count_max)then 

      count_max=count(i) 

    end if 

   end do 

end do 

 

!============================================================= 

! SED calculations around each node 

! including a check of the failure parameter 

!============================================================= 

do t=1,steps 

  print*,(real(t)*100./real(steps)) 

  do i=1,nodes 

    YM(i)=(2.*E/(3.14159*9.))*count_max/count(i) 

    e_y_t(i)=sig_y_t/YM(i) 

    do j=1,nodes 

      nid2=nid(1,j) 

      x2=x(t,j) 

      y2=y(t,j) 

      dist=sqrt((x2-x(t,i))**2+(y2-y(t,i))**2) 

      if(dist_0(i,j)<=delta1)then 

        if(nid2.ne.nid(1,i))then 

          strain(t,j)=abs((dist-(dist_0(i,j)))/dist_0(i,j)) 

          stress(t,j)=strain(t,j)*YM(i) 

          if(stress(t,j)>sig_y)then 

            stress(t,j)=sig_y 

          end if 

          SED_truss(t,j)=abs(strain(t,j)-strain(t-1,j))  & 

                         *((stress(t,j)+stress(t-1,j))/2.) 

          SED_node(t,i)=SED_node(t,i)+SED_truss(t,j) 

        end if 

      end if 

    end do 

    if(SED_node(t,i).ge.SED_crit_n.and.   & 

       SED_node(t-1,i).lt.SED_crit_n)then 

      write(200,*)nid(t,i),time(t) 

    end if 

  end do 

end do 
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end program 
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Appendix D. Example “nodes.k” File
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*NODE 

$#   nid               x               y               z      tc      rc 

       1      245.339005       58.799500           0.000       0       0 

       2      245.339005       62.228741           0.000       0       0 

       3      248.770126       58.799500           0.000       0       0 

       4      245.339005       65.657982           0.000       0       0 

       5      248.769882       62.228981           0.000       0       0 

       6      252.201263       58.799500           0.000       0       0 

       7      245.339005       69.087227           0.000       0       0 

*END 
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Appendix E. Example of “input.txt” File 
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enter number of nodes:  
 1040 
 enter number of time steps to analyze:  
 1000 
 enter nodal spacing:  
 3.45 
 enter length scale factor: 
 5.0 
 enter Young's Modulus: 
 200 
 enter critical SED: 
 0.145 
 enter yield stress:  
 0.439 
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